
Grant R Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9061125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pacritinib Inhibition of IRAK1 Blocks Aberrant TLR8 Signalling by SARS-CoV-2 and HIV-1-Derived RNA. Journal of Innate Immunity, 2023, 15, 96-106.	3.8	8
2	Current strategies to induce selective killing of HIV-1-infected cells. Journal of Leukocyte Biology, 2022, 112, 1273-1284.	3.3	9
3	CD4+ T cell-mimicking nanoparticles encapsulating DIABLO/SMAC mimetics broadly neutralize HIV-1 and selectively kill HIV-1-infected cells. Theranostics, 2021, 11, 9009-9021.	10.0	10
4	SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. IScience, 2021, 24, 102295.	4.1	86
5	Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells, 2021, 10, 1798.	4.1	2
6	SMAC mimetics induce autophagy-dependent apoptosis of HIV-1-infected macrophages. Cell Death and Disease, 2020, 11, 590.	6.3	22
7	CD4 ⁺ T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. MBio, 2020, 11, .	4.1	32
8	DIABLO/SMAC mimetics selectively kill HIV-1-infected resting memory CD4 ⁺ T cells: a potential role in a cure strategy for HIV-1 infection. Autophagy, 2019, 15, 744-746.	9.1	13
9	Selective cell death of latently HIV-infected CD4+ T cells mediated by autosis inducing nanopeptides. Cell Death and Disease, 2019, 10, 419.	6.3	36
10	TREM-1 Protects HIV-1-Infected Macrophages from Apoptosis through Maintenance of Mitochondrial Function. MBio, 2019, 10, .	4.1	42
11	Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication. Journal of Biological Chemistry, 2018, 293, 5808-5820.	3.4	50
12	SMAC Mimetics Induce Autophagy-Dependent Apoptosis of HIV-1-Infected Resting Memory CD4+ T Cells. Cell Host and Microbe, 2018, 24, 689-702.e7.	11.0	60
13	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
14	Autophagy Induction by Histone Deacetylase Inhibitors Inhibits HIV Type 1. Journal of Biological Chemistry, 2015, 290, 5028-5040.	3.4	58
15	Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathogens, 2015, 11, e1005018.	4.7	123
16	Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 2013, 494, 201-206.	27.8	669
17	Inhibition of human immunodeficiency virus type-1 through autophagy. Current Opinion in Microbiology, 2013, 16, 349-354.	5.1	33
18	Vitamin D attenuates nucleoside reverse transcriptase inhibitor induced human skeletal muscle mitochondria DNA depletion. Aids, 2013, 27, 1397-1401.	2.2	7

GRANT R CAMPBELL

#	Article	IF	CITATIONS
19	Vitamin D Inhibits Human Immunodeficiency Virus Type 1 and Mycobacterium tuberculosis Infection in Macrophages through the Induction of Autophagy. PLoS Pathogens, 2012, 8, e1002689.	4.7	240
20	Toll-Like Receptor 8 Ligands Activate a Vitamin D Mediated Autophagic Response that Inhibits Human Immunodeficiency Virus Type 1. PLoS Pathogens, 2012, 8, e1003017.	4.7	100
21	Antiretroviral Therapy Does Not Block the Secretion of the Human Immunodeficiency Virus Tat Protein. Infectious Disorders - Drug Targets, 2012, 12, 81-86.	0.8	96
22	Autophagy induction by vitamin D inhibits both <i>Mycobacterium tuberculosis</i> and human immunodeficiency virus type 1. Autophagy, 2012, 8, 1523-1525.	9.1	81
23	Hormonally Active Vitamin D3 (1α,25-Dihydroxycholecalciferol) Triggers Autophagy in Human Macrophages That Inhibits HIV-1 Infection. Journal of Biological Chemistry, 2011, 286, 18890-18902.	3.4	137
24	Differential Induction of Rat Neuronal Excitotoxic Cell Death by Human Immunodeficiency Virus Type 1 Clade B and C Tat Proteins. AIDS Research and Human Retroviruses, 2011, 27, 647-654.	1.1	24
25	Differential Induction of Interleukin-10 in Monocytes by HIV-1 Clade B and Clade C Tat Proteins. Journal of Biological Chemistry, 2010, 285, 18319-18325.	3.4	39
26	HIV-1 Clade B Tat, but Not Clade C Tat, Increases X4 HIV-1 Entry into Resting but Not Activated CD4+ T Cells. Journal of Biological Chemistry, 2010, 285, 1681-1691.	3.4	20
27	What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine?. Retrovirology, 2009, 6, 50.	2.0	75
28	Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant. Retrovirology, 2008, 5, 83.	2.0	17
29	CCL2 Increases X4-tropic HIV-1 Entry into Resting CD4+ T Cells. Journal of Biological Chemistry, 2008, 283, 30745-30753.	3.4	45
30	Tat-Specific Binding IgG and Disease Progression in HIV Type 1-Infected Ugandans. AIDS Research and Human Retroviruses, 2008, 24, 587-594.	1.1	10
31	Human Immunodeficiency Virus Type 1 Subtype C Tat Fails To Induce Intracellular Calcium Flux and Induces Reduced Tumor Necrosis Factor Production from Monocytes. Journal of Virology, 2007, 81, 5919-5928.	3.4	54
32	Tat mutations in an African cohort that do not prevent transactivation but change its immunogenic properties. Vaccine, 2007, 25, 8441-8447.	3.8	12
33	Reservoir cells no longer detectable after a heterologous SHIV challenge with the synthetic HIV-1 Tat Oyi vaccine. Retrovirology, 2006, 3, 8.	2.0	20
34	The C Terminus of HIV-1 Tat Modulates the Extent of CD178-mediated Apoptosis of T Cells. Journal of Biological Chemistry, 2005, 280, 38376-38382.	3.4	36
35	HIV-1 Tat protein enhances microtubule polymerization. Retrovirology, 2005, 2, 5.	2.0	50
36	The Glutamine-rich Region of the HIV-1 Tat Protein Is Involved in T-cell Apoptosis. Journal of Biological Chemistry, 2004, 279, 48197-48204.	3.4	80

GRANT R CAMPBELL

#	Article	IF	CITATIONS
37	A possible improvement for structure-based drug design illustrated by the discovery of a Tat HIV-1 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1543-1546.	2.2	15
38	Full-length HIV-1 Tat protein necessary for a vaccine. Vaccine, 2004, 22, 3105-3111.	3.8	23
39	Discovery of a Tat HIV-1 Inhibitor through Computer-Aided Drug Design. Spectroscopy, 2003, 17, 639-645.	0.8	8
40	Tat HIV-1 Primary and Tertiary Structures Critical to Immune Response Against Non-homologous Variants. Journal of Biological Chemistry, 2002, 277, 35915-35919.	3.4	35
41	Homonuclear1H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Biopolymers, 2001, 62, 324-335.	2.4	45