
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9060378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	(Invited) Area-selective spatial ALD of SiO2 interleaved with back-etch corrections: Selectivity and surface inspection of non-growth area. ECS Meeting Abstracts, 2021, MA2021-01, 839-839.	0.0	Ο
2	Atmospheric-Pressure Plasma-Enhanced Spatial ALD of SiO2 Studied by Gas-Phase Infrared and Optical Emission Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 24945-24957.	3.1	9
3	Next-Generation Li-ion Batteries Made with Spatial Atomic Layer Deposition as an Enabling Technology. ECS Meeting Abstracts, 2020, MA2020-02, 1695-1695.	0.0	1
4	Welcome Remarks - G02: Atomic Layer Deposition Applications 16. ECS Meeting Abstracts, 2020, MA2020-02, Open-Open.	0.0	0
5	(Invited) Area-Selective Spatial ALD of SiO ₂ Interleaved with Etch-Back Supercycles: Quantification of Area Selectivity By Low Energy Ion Scattering. ECS Meeting Abstracts, 2020, MA2020-02, 1382-1382.	0.0	0
6	Infrared and optical emission spectroscopy study of atmospheric pressure plasma-enhanced spatial ALD of Al2O3. Applied Physics Letters, 2019, 115, 083101.	3.3	11
7	Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition. Chemistry of Materials, 2019, 31, 1250-1257.	6.7	62
8	Infrared and Optical Emission Spectroscopy Study of the Surface Chemistry in Atmospheric-Pressure Plasma-Enhanced Spatial ALD of Al ₂ O ₃ . ECS Transactions, 2019, 92, 35-44.	0.5	0
9	Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography. Chemistry of Materials, 2018, 30, 1209-1217.	6.7	28
10	Atmospheric plasma-enhanced spatial-ALD of InZnO for high mobility thin film transistors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	25
11	Investigating the difference in nucleation during Si-based ALD on different surfaces for future area-selective deposition. , 2018, , .		0
12	Isotropic Atomic Layer Etching of ZnO Using Acetylacetone and O ₂ Plasma. ACS Applied Materials & Interfaces, 2018, 10, 38588-38595.	8.0	30
13	Anti-stiction coating for mechanically tunable photonic crystal devices. Optics Express, 2018, 26, 3882.	3.4	9
14	Atmospheric spatial atomic layer deposition of ZnOS buffer layers for flexible Cu(In,Ga)Se2 solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 051511.	2.1	13
15	Area-Selective Atomic Layer Deposition of In ₂ O ₃ :H Using a μ-Plasma Printer for Local Area Activation. Chemistry of Materials, 2017, 29, 921-925.	6.7	59
16	Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	34
17	Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches. Journal of Chemical Physics, 2017, 146, 052818.	3.0	17
18	Atomic Layer Deposition of In ₂ O ₃ :H from InCp and H ₂ O/O ₂ : Microstructure and Isotope Labeling Studies. ACS Applied Materials & Interfaces, 2017, 9, 592-601.	8.0	21

#	Article	IF	CITATIONS
19	Review Article: Recommended reading list of early publications on atomic layer deposition—Outcome of the "Virtual Project on the History of ALD― Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	65
20	(Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry. ECS Transactions, 2017, 80, 39-48.	0.5	13
21	Area-Selective Atomic Layer Deposition of SiO ₂ Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle. ACS Nano, 2017, 11, 9303-9311.	14.6	136
22	Atmospheric Pressure Plasma Enhanced Spatial ALD of ZrO ₂ for Low-Temperature, Large-Area Applications. ECS Journal of Solid State Science and Technology, 2017, 6, N243-N249.	1.8	20
23	Plasma-Enhanced Atmospheric-Pressure Spatial ALD of Al2O3 and ZrO2. ECS Transactions, 2016, 75, 11-19.	0.5	14
24	The influence of non-stoichiometry on the switching kinetics of strontium-titanate ReRAM devices. Journal of Applied Physics, 2016, 120, .	2.5	9
25	On the Growth, Percolation and Wetting of Silver Thin Films Grown by Atmospheric-Plasma Enhanced Spatial Atomic Layer Deposition. ECS Transactions, 2016, 75, 129-142.	0.5	6
26	Precision in harsh environments. Microsystems and Nanoengineering, 2016, 2, 16048.	7.0	60
27	Cyclic Etch/Passivation-Deposition as an All-Spatial Concept toward High-Rate Room Temperature Atomic Layer Etching. ECS Journal of Solid State Science and Technology, 2015, 4, N5067-N5076.	1.8	16
28	Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices. APL Materials, 2015, 3, .	5.1	69
29	Spatial Atmospheric Atomic Layer Deposition of In _{<i>x</i>} Ga _{<i>y</i>} Zn _{<i>z</i>} O for Thin Film Transistors. ACS Applied Materials & Interfaces, 2015, 7, 3671-3675.	8.0	48
30	Atmospheric pressure plasma enhanced spatial ALD of silver. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	40
31	Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy, 2015, 159, 420-426.	1.9	40
32	A Spatial ALD Oxide Passivation Module in an All-Spatial Etch-Passivation Cluster Concept. ECS Transactions, 2015, 69, 243-258.	0.5	2
33	Spatial Atmospheric ALD of Functional Layers for CIGS Solar Cells. ECS Transactions, 2015, 69, 31-37.	0.5	7
34	Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition?. ECS Journal of Solid State Science and Technology, 2015, 4, N5023-N5032.	1.8	115
35	Dielectric Material Options for Integrated Capacitors. ECS Journal of Solid State Science and Technology, 2014, 3, N120-N125.	1.8	6
36	Atmospheric Spatial Atomic Layer Deposition of In-Doped ZnO. ECS Journal of Solid State Science and Technology, 2014, 3, P111-P114.	1.8	31

#	Article	IF	CITATIONS
37	Plasmaâ€Assisted Atomic Layer Deposition of PtO _{<i>x</i>} from (MeCp)PtMe ₃ and O ₂ Plasma. Chemical Vapor Deposition, 2014, 20, 258-268.	1.3	11
38	Atomic-scale engineering of multifunctional nano-sized materials and films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 249-250.	1.8	0
39	Recent Advances in Atmospheric Vaporâ€Phase Deposition of Transparent and Conductive Zinc Oxide. Chemical Vapor Deposition, 2014, 20, 234-242.	1.3	29
40	Influence of stoichiometry on the performance of MIM capacitors from plasmaâ€assisted ALD Sr _{<i>x</i>} Ti _{<i>y</i>} O _{<i>z</i>} films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 389-396.	1.8	10
41	Impact of composition and crystallization behavior of atomic layer deposited strontium titanate films on the resistive switching of Pt/STO/TiN devices. Journal of Applied Physics, 2014, 116, 064503.	2.5	11
42	Compositional and Structural Analysis of Al-doped ZnO Multilayers by LEAP. Microscopy and Microanalysis, 2014, 20, 526-527.	0.4	2
43	Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition. Journal of Applied Physics, 2013, 114, .	2.5	67
44	Enhanced Doping Efficiency of Al-Doped ZnO by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide as an Alternative Aluminum Precursor. Chemistry of Materials, 2013, 25, 4619-4622.	6.7	75
45	Spatial Atmospheric Atomic Layer Deposition of Al _{<i>x</i>} Zn _{1–<i>x</i>} O. ACS Applied Materials & Interfaces, 2013, 5, 13124-13128.	8.0	46
46	Room Temperature Sensing of O ₂ and CO by Atomic Layer Deposition Prepared ZnO Films Coated with Pt Nanoparticles. ECS Transactions, 2013, 58, 203-214.	0.5	4
47	The kinetics of low-temperature spatial atomic layer deposition of aluminum oxide. Thin Solid Films, 2013, 532, 22-25.	1.8	15
48	Crystallization Study by Transmission Electron Microscopy of SrTiO3 Thin Films Prepared by Plasma-Assisted ALD. ECS Transactions, 2013, 50, 69-77.	0.5	2
49	Plasma-Assisted Atomic Layer Deposition of SrTiO ₃ : Stoichiometry and Crystallinity Studied by Spectroscopic Ellipsometry. ECS Journal of Solid State Science and Technology, 2013, 2, N15-N22.	1.8	23
50	Crystallization Study by Transmission Electron Microscopy of SrTiO ₃ Thin Films Prepared by Plasma-Assisted ALD. ECS Journal of Solid State Science and Technology, 2013, 2, N120-N124.	1.8	11
51	(Invited) Spatial Atomic Layer Deposition of Transparent Conductive Oxides. ECS Transactions, 2013, 58, 105-110.	0.5	5
52	On the environmental stability of ZnO thin films by spatial atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	25
53	On the kinetics of spatial atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 01A108.	2.1	47
54	A New Concept for Spatially-Divided Reactive Ion Etching with ALD-Based Passivation. ECS Transactions, 2013, 50, 73-82.	0.5	3

#	Article	IF	CITATIONS
55	ALD of SrTiO ₃ and Pt for Pt/SrTiO ₃ /Pt MIM Structures: Growth and Crystallization Study. ECS Transactions, 2013, 58, 153-162.	0.5	3
56	Mass Spectrometry Study of the Temperature Dependence of Pt Film Growth by Atomic Layer Deposition. ECS Journal of Solid State Science and Technology, 2012, 1, P255-P262.	1.8	27
57	Atmospheric pressure deposition of SnO <inf>2</inf> and ZnO. , 2012, , .		1
58	A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation. IOP Conference Series: Materials Science and Engineering, 2012, 41, 012001.	0.6	7
59	Characterization and Modeling of Atomic Layer Deposited High-Density Trench Capacitors in Silicon. IEEE Transactions on Semiconductor Manufacturing, 2012, 25, 247-254.	1.7	21
60	Concept of Spatially-divided Deep Reactive Ion Etching of Si using oxide atomic layer deposition in the passivation cycle. , 2012, , .		0
61	Spatial Atomic Layer Deposition of Zinc Oxide Thin Films. ACS Applied Materials & Interfaces, 2012, 4, 268-272.	8.0	95
62	Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	69
63	Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	296
64	Spatially-separated atomic layer deposition of Al <inf>2</inf> O <inf>3</inf> , a new option for high-throughput si solar cell passivation. , 2011, , .		2
65	Ultrafast Atomic Layer Deposition of Alumina Layers for Solar Cell Passivation. Journal of the Electrochemical Society, 2011, 158, H937.	2.9	35
66	Enhancing the Wettability of High Aspect-Ratio Through-Silicon Vias Lined With LPCVD Silicon Nitride or PE-ALD Titanium Nitride for Void-Free Bottom-Up Copper Electroplating. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 1728-1738.	2.5	7
67	Patterned deposition by plasma enhanced spatial atomic layer deposition. Physica Status Solidi - Rapid Research Letters, 2011, 5, 165-167.	2.4	19
68	Spatially separated atomic layer deposition of Al ₂ O ₃ , a new option for highâ€ŧhroughput Si solar cell passivation. Progress in Photovoltaics: Research and Applications, 2011, 19, 733-739.	8.1	40
69	MIM in 3D: Dream or reality? (invited). Microelectronic Engineering, 2011, 88, 1507-1513.	2.4	19
70	Method to pattern etch masks in two inclined planes for three-dimensional nano- and microfabrication. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 061604.	1.2	8
71	Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	51
72	High Throughput, Low Cost Deposition of Alumina Passivation Layers by Spatial Atomic Layer Deposition. Materials Research Society Symposia Proceedings, 2011, 1323, 119.	0.1	2

#	Article	IF	CITATIONS
73	The Business of Fast ALD Equipment for Depositing Alumina Passivation Layers on Crystalline Silicon Solar Cells Materials Research Society Symposia Proceedings, 2011, 1353, 149701.	0.1	0
74	Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al[sub 2]O[sub 3] Thin Films. Journal of the Electrochemical Society, 2011, 158, G21.	2.9	65
75	Plasma-Assisted Atomic Layer Deposition of SrTiO3: Stoichiometry and Crystallinity Study by Spectroscopic Ellipsometry. ECS Transactions, 2011, 41, 63-72.	0.5	6
76	Remote Plasma ALD of SrTiO[sub 3] Using Cyclopentadienlyl-Based Ti and Sr Precursors. Journal of the Electrochemical Society, 2011, 158, G34.	2.9	28
77	Cubic phase stabilization and improved dielectric properties of atomic-layer-deposited Er <i>_y</i> Hf _{1-y} O <i>_x</i> thin films. Journal of Materials Research, 2010, 25, 1629-1635.	2.6	9
78	High‧peed Spatial Atomic‣ayer Deposition of Aluminum Oxide Layers for Solar Cell Passivation. Advanced Materials, 2010, 22, 3564-3567.	21.0	287
79	(Invited) Ultrafast Atomic Layer Deposition of Alumina Layers for Solar Cell Passivation. ECS Transactions, 2010, 33, 419-427.	0.5	2
80	Plasma-Enhanced ALD of TiO ₂ Using a Novel Cyclopentadienyl Alkylamido Precursor [Ti(Cp ^{Me})(NMe ₂) ₃] and O ₂ Plasma. ECS Transactions, 2010, 33, 385-393.	0.5	8
81	Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide. Applied Physics Letters, 2010, 97, .	3.3	89
82	RF Characterization and Analytical Modelling of Through Silicon Vias and Coplanar Waveguides for 3D Integration. IEEE Transactions on Advanced Packaging, 2010, 33, 1072-1079.	1.6	43
83	Tin Nitride Thin Films as Negative Electrode Material for Lithium-Ion Solid-State Batteries. Journal of the Electrochemical Society, 2010, 157, A340.	2.9	40
84	Plasma-assisted atomic layer deposition of TiN/Al2O3 stacks for metal-oxide-semiconductor capacitor applications. Journal of Applied Physics, 2009, 106, .	2.5	49
85	Plasma-Assisted ALD of TiN/Al2O3 Stacks for MIMIM Trench Capacitor Applications. ECS Transactions, 2009, 25, 389-397.	0.5	5
86	Ultrahigh-density trench capacitors in silicon and their application to integrated DC-DC conversion. Procedia Chemistry, 2009, 1, 1435-1438.	0.7	13
87	High Energy Density Allâ€Solidâ€State Batteries: A Challenging Concept Towards 3D Integration. Advanced Functional Materials, 2008, 18, 1057-1066.	14.9	325
88	Ultrahigh Capacitance Density for Multiple ALD-Grown MIM Capacitor Stacks in 3-D Silicon. IEEE Electron Device Letters, 2008, 29, 740-742.	3.9	130
89	Deposition of TiN and TaN by Remote Plasma ALD for Cu and Li Diffusion Barrier Applications. Journal of the Electrochemical Society, 2008, 155, G287.	2.9	86
90	F+ implants in crystalline Si: the Si interstitial contribution. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	0

#	Article	IF	CITATIONS
91	Doping of Sub-50nm SOI Layers. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	1
92	Continuous deep reactive ion etching of tapered via holes for three-dimensional integration. Journal of Micromechanics and Microengineering, 2008, 18, 125023.	2.6	39
93	Evolution of fluorine and boron profiles during annealing in crystalline Si. Journal of Vacuum Science & Technology B, 2008, 26, 377.	1.3	3
94	Doping fin field-effect transistor sidewalls: Impurity dose retention in silicon due to high angle incident ion implants and the impact on device performance. Journal of Vacuum Science & Technology B, 2008, 26, 402.	1.3	40
95	Plasma-assisted atomic layer deposition of Ta2O5 from alkylamide precursor and remote O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 472-480.	2.1	27
96	Enhanced electrical properties of atomic layer deposited La2O3 thin films with embedded ZrO2 nanocrystals. Applied Physics Letters, 2008, 93, .	3.3	13
97	Silicon out-diffusion and aluminum in-diffusion in devices with atomic-layer deposited La2O3 thin films. Applied Physics Letters, 2008, 93, .	3.3	8
98	Spontaneous nanoclustering of ZrO2 in atomic layer deposited LayZr1â^'yOx thin films. Applied Physics Letters, 2008, 93, 062903.	3.3	9
99	Si interstitial contribution of F+ implants in crystalline Si. Journal of Applied Physics, 2008, 103, .	2.5	1
100	ALD Options for Si-integrated Ultrahigh-density Decoupling Capacitors in Pore and Trench Designs. ECS Transactions, 2007, 3, 173-181.	0.5	18
101	Remote Plasma and Thermal ALD of Al2O3 for Trench Capacitor Applications. ECS Transactions, 2007, 3, 67-77.	0.5	3
102	Deposition of TiN and TaN by Remote Plasma ALD for Diffusion Barrier Applications. ECS Transactions, 2007, 11, 45-54.	0.5	5
103	Synthesis andin situcharacterization of low-resistivity TaNx films by remote plasma atomic layer deposition. Journal of Applied Physics, 2007, 102, 083517.	2.5	75
104	Deposition of TiN and HfO2 in a commercial 200mm remote plasma atomic layer deposition reactor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1357-1366.	2.1	107
105	Plasma and Thermal ALD of Al[sub 2]O[sub 3] in a Commercial 200â€,mm ALD Reactor. Journal of the Electrochemical Society, 2007, 154, G165.	2.9	237
106	High-Rate Anisotropic Silicon Etching with the Expanding Thermal Plasma Technique. Electrochemical and Solid-State Letters, 2007, 10, H309.	2.2	9
107	Silicon Based System-in-Package : a new technology platform supported by very high quality passives and system level design tools. , 2007, , .		16
108	3â€D Integrated Allâ€Solidâ€State Rechargeable Batteries. Advanced Materials, 2007, 19, 4564-4567.	21.0	294

#	Article	IF	CITATIONS
109	Evidence of hafnia oxygen vacancy defects in MOCVD grown HfxSi1â^'xOy ultrathin gate dielectrics gated with Ru electrode. Microelectronic Engineering, 2007, 84, 2366-2369.	2.4	5
110	Low-Temperature Deposition of TiN by Plasma-Assisted Atomic Layer Deposition. Journal of the Electrochemical Society, 2006, 153, G956.	2.9	93
111	Leakage characteristics of advanced MOS capacitors with hafnium silicate dielectric and Ru electrode. , 2006, , .		0
112	Application of Dielectric, Ferroelectric and Piezoelectric Thin Film Devices in Mobile Communication and Medical Systems. Applications of Ferroelectrics, IEEE International Symposium on, 2006, , .	0.0	4
113	Fluorine Profile Distortion upon Annealing by the Presence of a CVD Grown Boron Box. AIP Conference Proceedings, 2006, , .	0.4	0
114	ALD Options for Si-Integrated High-Density Capacitors in Portable Devices. ECS Meeting Abstracts, 2006, , .	0.0	0
115	Fabrication of High Aspect Ratio Ferroelectric Microtubes by Vacuum Infiltration using Macroporous Silicon Templates. Journal of the American Ceramic Society, 2006, 89, 060526004107001-???.	3.8	22
116	Passive and heterogeneous integration towards a Si-based System-in-Package concept. Thin Solid Films, 2006, 504, 391-396.	1.8	55
117	Boron pocket and channel deactivation in nMOS transistors with SPER junctions. IEEE Transactions on Electron Devices, 2006, 53, 71-77.	3.0	9
118	Silicon Based System-in-Package : Breakthroughs in Miniaturization and â€~Nano'-integration Supported by Very High Quality Passives and System Level Design Tools. Materials Research Society Symposia Proceedings, 2006, 969, 1.	0.1	3
119	Impurity Solubility and Redistribution Due to Recrystallization of Preamorphized Silicon. Materials Research Society Symposia Proceedings, 2006, 912, 1.	0.1	1
120	Silicon Based System-in-Package : Breakthroughs in Miniaturization and â€~Nano'-integration Supported by Very High Quality Passives and System Level Design Tools. Materials Research Society Symposia Proceedings, 2006, 969, .	0.1	1
121	High-Rate Anisotropic Silicon Etching with the Expanding Thermal Plasma Technique. ECS Transactions, 2006, 3, 291-298.	0.5	1
122	Groups III and V impurity solubilities in silicon due to laser, flash, and solid-phase-epitaxial-regrowth anneals. Applied Physics Letters, 2006, 89, 071915.	3.3	53
123	EXTREMELY HIGH-DENSITY CAPACITORS WITH ALD HIGH-K DIELECTRIC LAYERS. , 2006, , 17-28.		9
124	Transient enhanced diffusion of B at low temperatures under extrinsic conditions. Solid-State Electronics, 2005, 49, 618-627.	1.4	9
125	Plasma-assisted atomic layer deposition of TiN monitored byin situspectroscopic ellipsometry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, L5-L8.	2.1	31
126	Plasma-assisted Atomic Layer Deposition of TiN Films at low Deposition Temperature for High-aspect Ratio Applications. Materials Research Society Symposia Proceedings, 2005, 863, B6.4-1.	0.1	4

#	Article	IF	CITATIONS
127	Impurity redistribution due to recrystallization of preamorphized silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2021.	1.6	14
128	Influence of preamorphization and recrystallization on indium doping profiles in silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 865.	1.6	5
129	Boron diffusion in amorphous silicon and the role of fluorine. Applied Physics Letters, 2004, 84, 4283-4285.	3.3	47
130	Characterization of Thermal and Electrical Stability of MOCVD HfO[sub 2]-HfSiO[sub 4] Dielectric Layers with Polysilicon Electrodes for Advanced CMOS Technologies. Journal of the Electrochemical Society, 2004, 151, G870.	2.9	9
131	Dopant diffusion in amorphous silicon. Materials Research Society Symposia Proceedings, 2004, 810, 25.	0.1	4
132	HfSiO[sub 4] Dielectric Layers Deposited by ALD Using HfCl[sub 4] and NH[sub 2](CH[sub 2])[sub 3]Si(OC[sub 2]H[sub 5])[sub 3] Precursors. Journal of the Electrochemical Society, 2004, 151, C716.	2.9	28
133	Metal oxide gate electrodes for advanced CMOS technology. Annalen Der Physik, 2004, 13, 31-34.	2.4	7
134	Ru and RuO2 gate electrodes for advanced CMOS technology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 117-121.	3.5	52
135	Application of Ru-based gate materials for CMOS technology. Materials Science in Semiconductor Processing, 2004, 7, 271-276.	4.0	35
136	Preparation of SrRuO3 films for advanced CMOS metal gates. Materials Science in Semiconductor Processing, 2004, 7, 265-269.	4.0	11
137	Novel low-temperature processing of low noise SDDs with on-detector electronics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 301-312.	1.6	7
138	The Role of Preamorphization and Activation for Ultra Shallow Junction Formation on Strained Si Layers Grown on SiGe Buffer. Materials Research Society Symposia Proceedings, 2004, 809, B9.6.1/C9.6.1.	0.1	0
139	Anodic silicon etching; the formation of uniform arrays of macropores or nanowires. Physica Status Solidi A, 2003, 197, 57-60.	1.7	25
140	High-Density, Low-loss MOS Decoupling Capacitors integrated in a GSM Power Amplifier. Materials Research Society Symposia Proceedings, 2003, 783, 631.	0.1	11
141	Performance enhancement and evaluation of deep dry etching on a production cluster platform. , 2003, , .		2
142	A Tuneable Metal Gate Work Function Using Solid State Diffusion of Nitrogen. , 2002, , .		5
143	Diffusion Suppression in Silicon by Substitutional C Doping. , 2002, , .		2
144	Experimental Study on the Mechanism of Carbon Diffusion in Silicon. Materials Research Society Symposia Proceedings, 2002, 717, 1.	0.1	3

#	Article	IF	CITATIONS
145	Nickel–zinc ferrite films by rapid thermal processing of sol–gel precursors. Applied Surface Science, 2002, 187, 68-74.	6.1	13
146	Control of a Metal-Electrode Work Function by Solid-State Diffusion of Nitrogen. Materials Research Society Symposia Proceedings, 2002, 716, 5111.	0.1	2
147	The influence of polysilicon gate morphology on dopant activation and deactivation kinetics in deep-submicron CMOS transistors. Materials Science in Semiconductor Processing, 2001, 4, 351-356.	4.0	17
148	Effect of heating ramp rates on transient enhanced diffusion in ion-implanted silicon. Applied Physics Letters, 2001, 78, 889-891.	3.3	25
149	Ultrashallow Junction Formation and Gate Activation in Deep-Submicron CMOS. Materials Research Society Symposia Proceedings, 2000, 610, 311.	0.1	4
150	High-value MOS capacitor arrays in ultradeep trenches in silicon. Microelectronic Engineering, 2000, 53, 581-584.	2.4	36
151	Etching of Deep Macropores in 6 in. Si Wafers. Journal of the Electrochemical Society, 2000, 147, 2757.	2.9	43
152	Role of self- and boron-interstitial clusters in transient enhanced diffusion in silicon. Applied Physics Letters, 2000, 76, 855-857.	3.3	48
153	Energetics of Self-Interstitial Clusters in Si. Physical Review Letters, 1999, 82, 4460-4463.	7.8	310
154	Boride-enhanced diffusion in silicon: Bulk and surface layers. Applied Physics Letters, 1999, 75, 181-183.	3.3	33
155	Cluster ripening and transient enhanced diffusion in silicon. Materials Science in Semiconductor Processing, 1999, 2, 369-376.	4.0	16
156	Robust giant magnetoresistance material system for magnetic sensors. Journal of Applied Physics, 1999, 85, 5531-5533.	2.5	25
157	Rapid thermal magnetic annealing as an emerging technology in field-annealing of thin magnetic films for recording heads. Materials Science in Semiconductor Processing, 1998, 1, 303-315.	4.0	2
158	Soft-magnetic fluxguide materials. Philips Journal of Research, 1998, 51, 59-91.	0.9	11
159	High-frequency permeability of soft-magnetic Fe–Hf–O films with high resistivity. Journal of Applied Physics, 1998, 83, 1569-1574.	2.5	60
160	Thermally assisted reversal of exchange biasing in NiO and FeMn based systems. Applied Physics Letters, 1998, 72, 492-494.	3.3	97
161	Influences on relaxation of exchange biasing in NiO/Ni66Co18Fe16 bilayers. Journal of Applied Physics, 1998, 83, 7207-7209.	2.5	32
162	Exchange-biased spin valves combining a high magnetoresistance ratio with soft-magnetic behavior. Applied Physics Letters, 1998, 72, 611-613.	3.3	4

#	Article	IF	CITATIONS
163	Magnetic behavior of probe layers of57Fein thin Fe films observed by means of nuclear resonant scattering of synchrotron radiation. Physical Review B, 1998, 58, 8590-8595.	3.2	40
164	Iron-Silicate Glassy Films by Sol-Gel Conversion Induced by Rapid Thermal Processing. Materials Research Society Symposia Proceedings, 1998, 525, 351.	0.1	4
165	The (001) Surface of Fe3O4 Grown Epitaxially on MgO and Characterized by Scanning Tunneling Microscopy Materials Research Society Symposia Proceedings, 1997, 474, 191.	0.1	11
166	On the origin of the uniaxial anisotropy in nanocrystalline soft-magnetic materials. Journal of Applied Physics, 1997, 81, 806-814.	2.5	47
167	Ferromagnetic resonance and eddy currents in high-permeable thin films. Journal of Applied Physics, 1997, 81, 350-354.	2.5	96
168	UV Photoannealing and RTP of Thin Sol-Gel Films. Materials Research Society Symposia Proceedings, 1996, 429, 193.	0.1	2
169	Rapid Thermal Magnetic Annealing: A Novel Technique in Thin-Film Recording Head Production?. Materials Research Society Symposia Proceedings, 1996, 429, 203.	0.1	6
170	Introduction: History and Perspectives of Rapid Thermal Processing. , 1996, , 1-34.		6
171	Rapid Thermal Processing of Magnetic Thin Films for Data Storage Devices. , 1996, , 521-552.		3
172	Rapid thermal annealing of amorphous and nanocrystalline softâ€magnetic alloys in a static magnetic field. Journal of Applied Physics, 1995, 77, 5293-5297.	2.5	22
173	Giant Magnetoresistance and Structural Study of Permalloy/Silver Multilayers During Rapid Thermal Annealing. Materials Research Society Symposia Proceedings, 1994, 342, 77.	0.1	4
174	Rapid Thermal Processing: Status, Problems and Options After the First 25 Years. Materials Research Society Symposia Proceedings, 1993, 303, 149.	0.1	20
175	Manufacturing Equipment Issues in Rapid Thermal Processing11Based in part on an invited presentation at the SPIE Workshop on Rapid Thermal and Integrated Processing, San Jose, California, September 9, 1991 , 1993, , 349-423.		17
176	Rapid thermal processing systems: A review with emphasis on temperature control. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1990, 8, 1249.	1.6	96
177	Energy relaxation of lower-dimensional hot carriers studied with picosecond photoluminescence. Physical Review B, 1988, 38, 13323-13334.	3.2	24
178	GaAs-AlGaAs Multiple Quantum Well Structures And High-Power Lasers Grown By Metalorganic Vapor Phase Epitaxy (Movpe) In A Chimney Reactor , 1987, 0800, 27.		0
179	Multiple quantum well structures and high-power lasers of gaas- algaas grown by metalorganic vapor phase epitaxy (MOVPE)1. Fiber and Integrated Optics, 1987, 6, 331-345.	2.5	2
180	SIMS analysis of AlxGa1-xas/gaas layered structures grown by metal-organic vapour phase Epitaxy. Surface and Interface Analysis, 1986, 9, 303-308.	1.8	20

#	Article	IF	CITATIONS
181	Low Interface Recombination Velocity in GaAs-(Al, Ga)As Double Heterostructures Grown by Metal Organic Vapour Phase Epitaxy. Japanese Journal of Applied Physics, 1985, 24, L761-L763.	1.5	17
182	Laser raman study on the crystallization of zeolites A, X and Y. Zeolites, 1983, 3, 321-328.	0.5	66
183	Vanadium oxide monolayer catalysts. 4. The catalytic oxidation of carbon monoxide. Industrial & Engineering Chemistry Product Research and Development, 1981, 20, 304-309.	0.5	33
184	Vanadium oxide monolayer catalysts The vapor-phase oxidation of methanol. Journal of Catalysis, 1981, 68, 464-472.	6.2	105
185	Vanadium oxide monolayer catalysts. 3. A Raman spectroscopic and temperature-programmed reduction study of monolayer and crystal-type vanadia on various supports. The Journal of Physical Chemistry, 1980, 84, 2783-2791.	2.9	356
186	Vanadium oxide monolayer catalysts. I. Preparation, characterization, and thermal stability. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1979, 449, 25-40.	1.2	122
187	Vanadium Oxide Monolayer Catalysts. Zeitschrift Fur Physikalische Chemie, 1978, 111, 215-224.	2.8	60
188	Electrical properties of MOCVD HfO/sub 2/ dielectric layers with polysilicon gate electrodes for CMOS applications. , 0, , .		0