
Emeran A Mayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9059296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AGA technical review on irritable bowel syndrome. Gastroenterology, 2002, 123, 2108-2131.	0.6	1,247
2	Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience, 2011, 12, 453-466.	4.9	1,226
3	Gut/brain axis and the microbiota. Journal of Clinical Investigation, 2015, 125, 926-938.	3.9	1,010
4	Principles and clinical implications of the brain–gut–enteric microbiota axis. Nature Reviews Gastroenterology and Hepatology, 2009, 6, 306-314.	8.2	992
5	Consumption of Fermented Milk Product With Probiotic Modulates Brain Activity. Gastroenterology, 2013, 144, 1394-1401.e4.	0.6	925
6	Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology, 1995, 109, 40-52.	0.6	903
7	Basic and clinical aspects of visceral hyperalgesia. Gastroenterology, 1994, 107, 271-293.	0.6	875
8	The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 133-148.	2.3	735
9	Gut Microbes and the Brain: Paradigm Shift in Neuroscience. Journal of Neuroscience, 2014, 34, 15490-15496.	1.7	719
10	Irritable bowel syndrome. Nature Reviews Disease Primers, 2016, 2, 16014.	18.1	674
11	The impact of irritable bowel syndrome on health-related quality of life. Gastroenterology, 2000, 119, 654-660.	0.6	643
12	Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology, 1997, 112, 64-72.	0.6	535
13	The neurobiology of stress and gastrointestinal disease. Gut, 2000, 47, 861-869.	6.1	509
14	An update on the use and investigation of probiotics in health and disease. Gut, 2013, 62, 787-796.	6.1	448
15	Gut microbiome and liver diseases. Gut, 2016, 65, 2035-2044.	6.1	443
16	Psychometric Properties of the Early Trauma Inventory–Self Report. Journal of Nervous and Mental Disease, 2007, 195, 211-218.	0.5	422
17	The Brain-Gut Axis in Abdominal Pain Syndromes. Annual Review of Medicine, 2011, 62, 381-396.	5.0	414
18	Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. American Journal of Physiology - Renal Physiology, 2002, 282, G307-G316.	1.6	384

#	Article	IF	CITATIONS
19	Brain–Gut Microbiome Interactions and Functional Bowel Disorders. Gastroenterology, 2014, 146, 1500-1512.	0.6	383
20	Neuroimaging of the Brain-Gut Axis: From Basic Understanding to Treatment of Functional GI Disorders. Gastroenterology, 2006, 131, 1925-1942.	0.6	368
21	Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome. Gastroenterology, 1997, 112, 55-63.	0.6	367
22	Quantitative Meta-analysis Identifies Brain Regions Activated During Rectal Distension in Irritable Bowel Syndrome. Gastroenterology, 2011, 140, 91-100.	0.6	367
23	V. Stress and irritable bowel syndrome. American Journal of Physiology - Renal Physiology, 2001, 280, G519-G524.	1.6	362
24	The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology, 2021, 160, 1486-1501.	0.6	356
25	Evidence for two distinct perceptual alterations in irritable bowel syndrome. Gut, 1997, 41, 505-512.	6.1	352
26	Improvement in pain and bowel function in female irritable bowel patients with alosetron, a 5-HT3 receptor antagonist. Alimentary Pharmacology and Therapeutics, 1999, 13, 1149-1159.	1.9	342
27	The Visceral Sensitivity Index: development and validation of a gastrointestinal symptom-specific anxiety scale. Alimentary Pharmacology and Therapeutics, 2004, 20, 89-97.	1.9	342
28	Role of visceral afferent mechanisms in functional bowel disorders. Gastroenterology, 1990, 99, 1688-1704.	0.6	328
29	Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterology and Motility, 2007, 19, 62-88.	1.6	310
30	Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology, 2002, 122, 2032-2048.	0.6	308
31	Cerebral Activation in Patients With Irritable Bowel Syndrome and Control Subjects During Rectosigmoid Stimulation. Psychosomatic Medicine, 2001, 63, 365-375.	1.3	291
32	The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clinical Gastroenterology and Hepatology, 2019, 17, 322-332.	2.4	285
33	Differential effect of long-term esophageal acid exposure on mechanosensitivity and chemosensitivity in humans. Gastroenterology, 1998, 115, 1363-1373.	0.6	284
34	Evidence for the hypersensitivity of lumbar splanchnic afferents in irritable bowel syndrome. Gastroenterology, 1994, 107, 1686-1696.	0.6	280
35	A Randomized Controlled Clinical Trial of the Serotonin Type 3 Receptor Antagonist Alosetron in Women With Diarrhea-Predominant Irritable Bowel Syndrome. Archives of Internal Medicine, 2001, 161, 1733.	4.3	275
36	Sex-related differences in IBS patients: central processing of visceral stimuli. Gastroenterology, 2003, 124. 1738-1747.	0.6	264

#	Article	IF	CITATIONS
37	The neural correlates of placebo effects: a disruption account. NeuroImage, 2004, 22, 447-455.	2.1	259
38	One-year test–retest reliability of intrinsic connectivity network fMRI in older adults. NeuroImage, 2012, 61, 1471-1483.	2.1	254
39	Regional Gray Matter Density Changes in Brains of Patients With Irritable Bowel Syndrome. Gastroenterology, 2010, 139, 48-57.e2.	0.6	252
40	Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain, 2005, 115, 398-409.	2.0	251
41	Association Between Early Adverse Life Events and Irritable Bowel Syndrome. Clinical Gastroenterology and Hepatology, 2012, 10, 385-390.e3.	2.4	251
42	Symptoms and visceral perception in severe functional and organic dyspepsia. Gut, 1998, 42, 814-822.	6.1	246
43	An Irritable Bowel Syndrome-Specific Symptom Questionnaire: Development and Validation. Scandinavian Journal of Gastroenterology, 2003, 38, 947-954.	0.6	245
44	Altered brainâ€gut axis in autism: Comorbidity or causative mechanisms?. BioEssays, 2014, 36, 933-939.	1.2	245
45	Irritable Bowel Syndrome. New England Journal of Medicine, 2008, 358, 1692-1699.	13.9	241
46	Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. American Journal of Physiology - Renal Physiology, 2005, 289, G42-G53.	1.6	240
47	Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome, 2017, 5, 49.	4.9	228
48	Reduced Brainstem Inhibition during Anticipated Pelvic Visceral Pain Correlates with Enhanced Brain Response to the Visceral Stimulus in Women with Irritable Bowel Syndrome. Journal of Neuroscience, 2008, 28, 349-359.	1.7	218
49	Dysregulation of the hypothalamicâ€pituitaryâ€adrenal (HPA) axis in irritable bowel syndrome. Neurogastroenterology and Motility, 2009, 21, 149-159.	1.6	208
50	Towards a systems view of IBS. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 592-605.	8.2	207
51	Effect of Amitryptiline on Symptoms, Sleep, and Visceral Perception in Patients With Functional Dyspepsia. American Journal of Gastroenterology, 1998, 93, 160-165.	0.2	202
52	A cognitive-behavioral treatment for irritable bowel syndrome using interoceptive exposure to visceral sensations. Behaviour Research and Therapy, 2011, 49, 413-421.	1.6	198
53	The Central Role of Gastrointestinal-Specific Anxiety in Irritable Bowel Syndrome: Further Validation of the Visceral Sensitivity Index. Psychosomatic Medicine, 2007, 69, 89-98.	1.3	196
54	Irritable bowel syndrome patients show enhanced modulation of visceral perception by auditory stress. American Journal of Gastroenterology, 2003, 98, 135-143.	0.2	192

#	Article	IF	CITATIONS
55	Brain imaging approaches to the study of functional GI disorders: A Rome Working Team Report. Neurogastroenterology and Motility, 2009, 21, 579-596.	1.6	188
56	Longitudinal Change in Perceptual and Brain Activation Response to Visceral Stimuli in Irritable Bowel Syndrome Patients. Gastroenterology, 2006, 131, 352-365.	0.6	175
57	Differences in somatic perception in female patients with irritable bowel syndrome with and without fibromyalgia. Pain, 2000, 84, 297-307.	2.0	174
58	Cyclic vomiting syndrome in adults. Neurogastroenterology and Motility, 2008, 20, 269-284.	1.6	172
59	Symptoms and Visceral Perception in Patients With Pain-Predominant Irritable Bowel Syndrome. American Journal of Gastroenterology, 1999, 94, 1320-1326.	0.2	171
60	Perceptual responses in patients with inflammatory and functional bowel disease. Gut, 2000, 47, 497-505.	6.1	171
61	Gastroparesis and functional dyspepsia: excerpts from the AGA/ANMS meeting. Neurogastroenterology and Motility, 2010, 22, 113-133.	1.6	171
62	Childhood Trauma Is Associated With Hypothalamic-Pituitary-Adrenal Axis Responsiveness in Irritable Bowel Syndrome. Gastroenterology, 2009, 137, 1954-1962.	0.6	167
63	Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain, 1996, 66, 151-161.	2.0	166
64	Sensation of bloating and visible abdominal distension in patients with irritable bowel syndrome. American Journal of Gastroenterology, 2001, 96, 3341-3347.	0.2	163
65	The Gut–Brain Axis. Annual Review of Medicine, 2022, 73, 439-453.	5.0	163
66	Clinical Determinants of Health-Related Quality of Life in Patients With Irritable Bowel Syndrome. Archives of Internal Medicine, 2004, 164, 1773.	4.3	158
67	Brain Structure and Response to Emotional Stimuli as Related to Gut Microbial Profiles in Healthy Women. Psychosomatic Medicine, 2017, 79, 905-913.	1.3	158
68	Gender differences in regional brain response to visceral pressure in IBS patients. European Journal of Pain, 2000, 4, 157-172.	1.4	157
69	Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current Obesity Reports, 2015, 4, 250-261.	3.5	154
70	Sleep Disturbances in Clinic Patients With Functional Bowel Disorders. American Journal of Gastroenterology, 2000, 95, 1195-1200.	0.2	145
71	Effect of Abuse History on Pain Reports and Brain Responses to Aversive Visceral Stimulation: An fMRI Study. Gastroenterology, 2008, 134, 396-404.	0.6	141
72	Functional GI disorders: from animal models to drug development. Gut, 2008, 57, 384-404.	6.1	140

#	Article	IF	CITATIONS
73	Brain Responses to Visceral Stimuli Reflect Visceral Sensitivity Thresholds in Patients With Irritable Bowel Syndrome. Gastroenterology, 2012, 142, 463-472.e3.	0.6	139
74	Prevalence of irritable bowel syndrome among university students. Journal of Psychosomatic Research, 2003, 55, 501-505.	1.2	137
75	Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain, 2013, 154, 1528-1541.	2.0	134
76	Review article: modulation of the brain–gut axis as a therapeutic approach in gastrointestinal disease. Alimentary Pharmacology and Therapeutics, 2006, 24, 919-933.	1.9	133
77	Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain, 2014, 155, 137-149.	2.0	132
78	Serum and Colonic Mucosal Immune Markers in Irritable Bowel Syndrome. American Journal of Gastroenterology, 2012, 107, 262-272.	0.2	131
79	Condition-specific deactivation of brain regions by 5-HT3 receptor antagonist Alosetron. Gastroenterology, 2002, 123, 969-977.	0.6	128
80	Functional Abdominal Pain Syndrome. Gastroenterology, 2006, 130, 1492-1497.	0.6	128
81	The MAPP research network: design, patient characterization and operations. BMC Urology, 2014, 14, 58.	0.6	128
82	The Effect of Life Stress on Symptoms of Heartburn. Psychosomatic Medicine, 2004, 66, 426-434.	1.3	127
83	Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut, 2005, 54, 1396-1401.	6.1	127
84	Brain–gut–microbiome interactions in obesity and food addiction. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 655-672.	8.2	127
85	Sex differences in brain activity during aversive visceral stimulation and its expectation in patients with chronic abdominal pain: A network analysis. NeuroImage, 2008, 41, 1032-1043.	2.1	126
86	Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. British Journal of Pharmacology, 2001, 133, 975-987.	2.7	125
87	A Dose-Ranging, Phase II Study of the Efficacy and Safety of Alosetron in Men with Diarrhea-Predominant IBS. American Journal of Gastroenterology, 2005, 100, 115-123.	0.2	125
88	The MAPP research network: a novel study of urologic chronic pelvic pain syndromes. BMC Urology, 2014, 14, 57.	0.6	123
89	Emerging disease model for functional gastrointestinal disorders. American Journal of Medicine, 1999, 107, 12-19.	0.6	120
90	Functional variants in the sucrase–isomaltase gene associate with increased risk of irritable bowel syndrome. Gut, 2018, 67, 263-270.	6.1	120

#	Article	IF	CITATIONS
91	Characterization of the Alternating Bowel Habit Subtype in Patients with Irritable Bowel Syndrome. American Journal of Gastroenterology, 2005, 100, 896-904.	0.2	113
92	The Effect of Auditory Stress on Perception of Intraesophageal Acid in Patients With Gastroesophageal Reflux Disease. Gastroenterology, 2008, 134, 696-705.	0.6	113
93	The effect of the 5-HT3receptor antagonist, alosetron, on brain responses to visceral stimulation in irritable bowel syndrome patients. Alimentary Pharmacology and Therapeutics, 2002, 16, 1357-1366.	1.9	112
94	Predictors of Patient-Assessed Illness Severity in Irritable Bowel Syndrome. American Journal of Gastroenterology, 2008, 103, 2536-2543.	0.2	112
95	Diseases, Disorders, and Comorbidities of Interoception. Trends in Neurosciences, 2021, 44, 39-51.	4.2	112
96	Imaging brain mechanisms in chronic visceral pain. Pain, 2015, 156, S50-S63.	2.0	107
97	Brain Responses To Visceral and Somatic Stimuli in Patients With Irritable Bowel Syndrome With and Without Fibromyalgia. American Journal of Gastroenterology, 2003, 98, 1354-1361.	0.2	106
98	Type, Rather Than Number, of Mental and Physical Comorbidities Increases the Severity of Symptoms in Patients With Irritable Bowel Syndrome. Clinical Gastroenterology and Hepatology, 2013, 11, 1147-1157.	2.4	106
99	Surgically Induced Changes in Gut Microbiome and Hedonic Eating as Related to Weight Loss: Preliminary Findings in Obese Women Undergoing Bariatric Surgery. Psychosomatic Medicine, 2017, 79, 880-887.	1.3	105
100	A novel water-soluble selective CRF1 receptor antagonist, NBI 35965, blunts stress-induced visceral hyperalgesia and colonic motor function in rats. Brain Research, 2003, 985, 32-42.	1.1	102
101	Review article: gender-related differences in functional gastrointestinal disorders. Alimentary Pharmacology and Therapeutics, 1999, 13, 65-69.	1.9	98
102	Vasoactive Intestinal Polypeptide and Mast Cells Regulate Increased Passage of Colonic Bacteria in Patients With Irritable Bowel Syndrome. Gastroenterology, 2017, 153, 948-960.e3.	0.6	98
103	Effect of sex on perception of rectosigmoid stimuli in irritable bowel syndrome. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R277-R284.	0.9	97
104	Chronic Early-life Stress in Rat Pups Alters Basal Corticosterone, Intestinal Permeability, and Fecal Microbiota at Weaning: Influence of Sex. Journal of Neurogastroenterology and Motility, 2017, 23, 135-143.	0.8	97
105	Corticotropin-releasing factor receptor 1 mediates acute and delayed stress-induced visceral hyperalgesia in maternally separated Long-Evans rats. American Journal of Physiology - Renal Physiology, 2005, 289, G704-G712.	1.6	96
106	Patients with Chronic Visceral Pain Show Sex-Related Alterations in Intrinsic Oscillations of the Resting Brain. Journal of Neuroscience, 2013, 33, 11994-12002.	1.7	96
107	Effect of hypnotherapy and educational intervention on brain response to visceral stimulus in the irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 2013, 37, 1184-1197.	1.9	94
108	Sex-based differences in gastrointestinal pain. European Journal of Pain, 2004, 8, 451-463.	1.4	93

#	Article	IF	CITATIONS
109	Genetic Approaches to Functional Gastrointestinal Disorders. Gastroenterology, 2010, 138, 1276-1285.	0.6	93
110	Alterations in Resting State Oscillations and Connectivity in Sensory and Motor Networks in Women with Interstitial Cystitis/Painful Bladder Syndrome. Journal of Urology, 2014, 192, 947-955.	0.2	93
111	The Effects of Acute and Chronic Psychological Stress on Bladder Function in a Rodent Model. Urology, 2011, 78, 967.e1-967.e7.	0.5	92
112	Role of brain imaging in disorders of brain–gut interaction: a Rome Working Team Report. Gut, 2019, 68, 1701-1715.	6.1	91
113	Sexual Dysfunction in Patients with Irritable Bowel Syndrome and Non-Ulcer Dyspepsia. Digestion, 1998, 59, 79-85.	1.2	89
114	Corticotropin-Releasing Factor Receptor 1 Antagonist Alters Regional Activation and Effective Connectivity in an Emotional–Arousal Circuit during Expectation of Abdominal Pain. Journal of Neuroscience, 2011, 31, 12491-12500.	1.7	89
115	Adverse childhood experiences are associated with irritable bowel syndrome and gastrointestinal symptom severity. Neurogastroenterology and Motility, 2016, 28, 1252-1260.	1.6	88
116	Irritable bowel syndrome patients show altered sensitivity to exogenous opioids. Pain, 2000, 87, 137-147.	2.0	85
117	Evidence for an association of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor function in patients with irritable bowel syndrome, based on tripartite network analysis. Microbiome, 2019, 7, 45.	4.9	83
118	Increased Brain Gray Matter in the Primary Somatosensory Cortex is Associated with Increased Pain and Mood Disturbance in Patients with Interstitial Cystitis/Painful Bladder Syndrome. Journal of Urology, 2015, 193, 131-137.	0.2	82
119	Sex and Disease-Related Alterations of Anterior Insula Functional Connectivity in Chronic Abdominal Pain. Journal of Neuroscience, 2014, 34, 14252-14259.	1.7	80
120	Impaired Emotional Learning and Involvement of the Corticotropin-Releasing Factor Signaling System in Patients With Irritable Bowel Syndrome. Gastroenterology, 2013, 145, 1253-1261.e3.	0.6	79
121	Delayed stress-induced colonic hypersensitivity in male Wistar rats: role of neurokinin-1 and corticotropin-releasing factor-1 receptors. American Journal of Physiology - Renal Physiology, 2004, 286, G683-G691.	1.6	78
122	Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterology, 2017, 4, e000134.	1.1	77
123	Sexâ€based differences in brain alterations across chronic pain conditions. Journal of Neuroscience Research, 2017, 95, 604-616.	1.3	77
124	Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. American Journal of Physiology - Renal Physiology, 2008, 294, G1033-G1040.	1.6	76
125	Is a negative colonoscopy associated with reassurance or improved health-related quality of life in irritable bowel syndrome?. Gastrointestinal Endoscopy, 2005, 62, 892-899.	0.5	74
126	Sex-dependent differences in the activity and modulation of N-methyl-d-aspartic acid receptors in rat dorsal root ganglia neurons. Neuroscience, 2007, 148, 1015-1020.	1.1	74

#	Article	IF	CITATIONS
127	The HTR3A Polymorphism c42C>T Is Associated With Amygdala Responsiveness in Patients With Irritable Bowel Syndrome. Gastroenterology, 2011, 140, 1943-1951.	0.6	73
128	Preliminary structural MRI based brain classification of chronic pelvic pain: A MAPP network study. Pain, 2014, 155, 2502-2509.	2.0	73
129	Sex differences in regional brain response to aversive pelvic visceral stimuli. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R268-R276.	0.9	71
130	Depression, anxiety, and the gastrointestinal system. Journal of Clinical Psychiatry, 2001, 62 Suppl 8, 28-36; discussion 37.	1.1	70
131	Basic Pathophysiologic Mechanisms in Irritable Bowel Syndrome. Digestive Diseases, 2001, 19, 212-218.	0.8	69
132	Sex differences in emotion-related cognitive processes in irritable bowel syndrome and healthy control subjects. Pain, 2013, 154, 2088-2099.	2.0	69
133	Sex-Related Differences of Cortical Thickness in Patients with Chronic Abdominal Pain. PLoS ONE, 2013, 8, e73932.	1.1	69
134	Chronic psychological stress in high-anxiety rats induces sustained bladder hyperalgesia. Physiology and Behavior, 2015, 139, 541-548.	1.0	69
135	Brain networks underlying perceptual habituation to repeated aversive visceral stimuli in patients with irritable bowel syndrome. NeuroImage, 2009, 47, 952-960.	2.1	68
136	Patterns of brain structural connectivity differentiate normal weight from overweight subjects. NeuroImage: Clinical, 2015, 7, 506-517.	1.4	67
137	Substance P release in the dorsal horn assessed by receptor internalization: NMDA receptors counteract a tonic inhibition by GABABreceptors. European Journal of Neuroscience, 1999, 11, 417-426.	1.2	66
138	Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP. NeuroImage: Clinical, 2015, 8, 493-502.	1.4	66
139	Brain functional connectivity is associated with visceral sensitivity in women with Irritable Bowel Syndrome. NeuroImage: Clinical, 2017, 15, 449-457.	1.4	65
140	Long-term evaluation of pylorus preservation during pancreaticoduodenectomy. World Journal of Surgery, 1988, 12, 663-669.	0.8	64
141	Unique Microstructural Changes in the Brain Associated with Urological Chronic Pelvic Pain Syndrome (UCPPS) Revealed by Diffusion Tensor MRI, Super-Resolution Track Density Imaging, and Statistical Parameter Mapping: A MAPP Network Neuroimaging Study. PLoS ONE, 2015, 10, e0140250.	1.1	64
142	Increased Prevalence of Rare Sucrase-isomaltase PathogenicÂVariants in Irritable Bowel Syndrome Patients. Clinical Gastroenterology and Hepatology, 2018, 16, 1673-1676.	2.4	64
143	Alosetron and irritable bowel syndrome. Expert Opinion on Pharmacotherapy, 2003, 4, 2089-2098.	0.9	61
144	Altered functional connectivity within the central reward network in overweight and obese women. Nutrition and Diabetes, 2015, 5, e148-e148.	1.5	61

#	Article	IF	CITATIONS
145	Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocrine Reviews, 2021, 42, 219-258.	8.9	61
146	Early Adverse Life Events and Resting State Neural Networks in Patients With Chronic Abdominal Pain. Psychosomatic Medicine, 2014, 76, 404-412.	1.3	59
147	The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P Journal of Physiology, 1990, 420, 47-71.	1.3	57
148	Multivariate morphological brain signatures predict patients with chronic abdominal pain from healthy control subjects. Pain, 2015, 156, 1545-1554.	2.0	57
149	Regional Neuroplastic Brain Changes in Patients with Chronic Inflammatory and Non-Inflammatory Visceral Pain. PLoS ONE, 2014, 9, e84564.	1.1	56
150	Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Translational Psychiatry, 2022, 12, 164.	2.4	55
151	Sigmoid afferent mechanisms in patients with irritable bowel syndrome. Digestive Diseases and Sciences, 1997, 42, 1112-1120.	1.1	54
152	Enhanced preattentive central nervous system reactivity in irritable bowel syndrome. American Journal of Gastroenterology, 2002, 97, 2791-2797.	0.2	54
153	Acute tryptophan depletion alters the effective connectivity of emotional arousal circuitry during visceral stimuli in healthy women. Gut, 2011, 60, 1196-1203.	6.1	54
154	Brain White Matter Abnormalities in Female Interstitial Cystitis/Bladder Pain Syndrome: A MAPP Network Neuroimaging Study. Journal of Urology, 2015, 194, 118-126.	0.2	54
155	Randomised clinical trial: symptoms of the irritable bowel syndrome are improved by a psychoâ€education group intervention. Alimentary Pharmacology and Therapeutics, 2013, 37, 304-315.	1.9	53
156	Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS ONE, 2018, 13, e0201772.	1.1	53
157	Expression of the Bitter Taste Receptor, T2R38, in Enteroendocrine Cells of the Colonic Mucosa of Overweight/Obese vs. Lean Subjects. PLoS ONE, 2016, 11, e0147468.	1.1	52
158	Altered brain responses in subjects with irritable bowel syndrome during cued and uncued pain expectation. Neurogastroenterology and Motility, 2016, 28, 127-138.	1.6	52
159	Evidence for alterations in central noradrenergic signaling in irritable bowel syndrome. NeuroImage, 2012, 63, 1854-1863.	2.1	51
160	Visceral sensitivity as a mediator of outcome in the treatment of irritable bowel syndrome. Behaviour Research and Therapy, 2012, 50, 647-650.	1.6	48
161	Disease-related differences in resting-state networks. Pain, 2015, 156, 809-819.	2.0	47
162	Gut-Brain Axis and Behavior. Nestle Nutrition Institute Workshop Series, 2017, 88, 45-54.	1.5	47

10

#	Article	IF	CITATIONS
163	Adverse Childhood Experiences and Symptoms of Urologic Chronic Pelvic Pain Syndrome: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network Study. Annals of Behavioral Medicine, 2018, 52, 865-877.	1.7	47
164	The Role of Neurokinin 1 Receptors in the Maintenance of Visceral Hyperalgesia Induced by Repeated Stress in Rats. Gastroenterology, 2006, 130, 1729-1742.	0.6	46
165	Dual role of 5-HT3 receptors in a rat model of delayed stress-induced visceral hyperalgesia â~†. Pain, 2007, 130, 56-65.	2.0	46
166	Regional brain activation in conscious, nonrestrained rats in response to noxious visceral stimulation. Pain, 2008, 138, 233-243.	2.0	46
167	miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome. Scientific Reports, 2017, 7, 14680.	1.6	46
168	The effect of octreotide on human gastric compliance and sensory perception. Neurogastroenterology and Motility, 1995, 7, 175-185.	1.6	44
169	Increased Startle Responses in Interstitial Cystitis: Evidence for Central Hyperresponsiveness to Visceral Related Threat. Journal of Urology, 2009, 181, 2127-2133.	0.2	44
170	The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression. Psychoneuroendocrinology, 2016, 69, 67-76.	1.3	43
171	Brain white matter changes associated with urological chronic pelvic pain syndrome: multisite neuroimaging from a MAPP caseâ ϵ "control study. Pain, 2016, 157, 2782-2791.	2.0	43
172	Early adverse life events are associated with altered brain network architecture in a sex- dependent manner. Neurobiology of Stress, 2017, 7, 16-26.	1.9	43
173	A Distinct Brainâ€Gutâ€Microbiome Profile Exists for Females with Obesity and Food Addiction. Obesity, 2020, 28, 1477-1486.	1.5	43
174	Anti-hyperalgesic effect of octreotide in patients with irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 2004, 19, 123-131.	1.9	41
175	The role of experimental models in developing new treatments for irritable bowel syndrome. Expert Review of Gastroenterology and Hepatology, 2011, 5, 43-57.	1.4	41
176	Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats. PLoS ONE, 2016, 11, e0155037.	1.1	41
177	Gut Microbiome and Modulation of <scp>CNS</scp> Function. , 2019, 10, 57-72.		40
178	Racial Differences in the Impact of Irritable Bowel Syndrome on Health-Related Quality of Life. Journal of Clinical Gastroenterology, 2004, 38, 782-789.	1.1	39
179	Increased Acoustic Startle Responses in IBS Patients During Abdominal and Nonabdominal Threat. Psychosomatic Medicine, 2008, 70, 920-927.	1.3	39
180	Influence of Sucrose Ingestion on Brainstem and Hypothalamic Intrinsic Oscillations in Lean and Obese Women. Gastroenterology, 2014, 146, 1212-1221.	0.6	39

#	Article	IF	CITATIONS
181	Resilience is decreased in irritable bowel syndrome and associated with symptoms and cortisol response. Neurogastroenterology and Motility, 2018, 30, e13155.	1.6	39
182	Sex differences in functional brain activation during noxious visceral stimulation in rats. Pain, 2009, 145, 120-128.	2.0	37
183	Functional brain activation during retrieval of visceral pain-conditioned passive avoidance in the rat. Pain, 2011, 152, 2746-2756.	2.0	37
184	Autonomic response to a visceral stressor is dysregulated in irritable bowel syndrome and correlates with duration of disease. Neurogastroenterology and Motility, 2013, 25, e650-9.	1.6	37
185	The Power of Placebo in Pediatric Functional Gastrointestinal Disease. Gastroenterology, 2009, 137, 1207-1210.	0.6	35
186	A Combined Nutrient and Lactulose Challenge Test Allows Symptom-Based Clustering of Patients With Irritable Bowel Syndrome. American Journal of Gastroenterology, 2013, 108, 786-795.	0.2	35
187	Early life stress elicits visceral hyperalgesia and functional reorganization of pain circuits in adult rats. Neurobiology of Stress, 2016, 3, 8-22.	1.9	35
188	Proximal colon distention increases Fos expression in the lumbosacral spinal cord and activates sacral parasympathetic NADPHd-positive neurons in rats. Journal of Comparative Neurology, 1998, 390, 311-321.	0.9	34
189	Differences in brain responses between lean and obese women to a sweetened drink. Neurogastroenterology and Motility, 2013, 25, 579.	1.6	34
190	Cognitive behavioral therapy for irritable bowel syndrome induces bidirectional alterations in the brain-gut-microbiome axis associated with gastrointestinal symptom improvement. Microbiome, 2021, 9, 236.	4.9	34
191	Inflammatory bowel disease and irritable bowel syndrome. Current Opinion in Gastroenterology, 2003, 19, 336-342.	1.0	33
192	Brain Resting-State Network Alterations Associated With Crohn's Disease. Frontiers in Neurology, 2020, 11, 48.	1.1	33
193	Alterations in reward network functional connectivity are associated with increased food addiction in obese individuals. Scientific Reports, 2021, 11, 3386.	1.6	32
194	Neural and psychological predictors of treatment response in irritable bowel syndrome patients with a 5â€HT ₃ receptor antagonist: a pilot study. Alimentary Pharmacology and Therapeutics, 2008, 28, 344-352.	1.9	31
195	Interactions between gut permeability and brain structure and function in health and irritable bowel syndrome. Neurolmage: Clinical, 2019, 21, 101602.	1.4	31
196	Traditional Chinese Medicine Based Subgrouping of Irritable Bowel Syndrome Patients. The American Journal of Chinese Medicine, 2005, 33, 365-379.	1.5	30
197	Acceptance-based interoceptive exposure for young children with functional abdominal pain. Behaviour Research and Therapy, 2017, 97, 200-212.	1.6	30
198	Involvement of vasopressin 3 receptors in chronic psychological stress-induced visceral hyperalgesia in rats. American Journal of Physiology - Renal Physiology, 2009, 296, G302-G309.	1.6	29

#	Article	IF	CITATIONS
199	Genomeâ€wide <scp>DNA</scp> methylation profiling of peripheral blood mononuclear cells in irritable bowel syndrome. Neurogastroenterology and Motility, 2016, 28, 410-422.	1.6	29
200	Multisite, multimodal neuroimaging of chronic urological pelvic pain: Methodology of the MAPP Research Network. NeuroImage: Clinical, 2016, 12, 65-77.	1.4	29
201	History of early life adversity is associated with increased food addiction and sexâ€specific alterations in reward network connectivity in obesity. Obesity Science and Practice, 2019, 5, 416-436.	1.0	29
202	The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients, 2021, 13, 4497.	1.7	29
203	Risk and Protective Factors Related to Early Adverse Life Events in Irritable Bowel Syndrome. Journal of Clinical Gastroenterology, 2020, 54, 63-69.	1.1	28
204	Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain's reward center. Gut Microbes, 2022, 14, 2051999.	4.3	28
205	Spinal and supraspinal modulation of visceral sensation. Gut, 2000, 47, 69iv-72.	6.1	27
206	The effect of the GLPâ€1 analogue Exenatide on functional connectivity within an NTSâ€based network in women with and without obesity. Obesity Science and Practice, 2017, 3, 434-445.	1.0	27
207	Predictors of Health-related Quality of Life in Irritable Bowel Syndrome Patients Compared With Healthy Individuals. Journal of Clinical Gastroenterology, 2019, 53, e142-e149.	1.1	27
208	Psychological stress and colitis. Gut, 2000, 46, 595-596.	6.1	26
209	Functional Somatic Syndromes: Emerging Biomedical Models and Traditional Chinese Medicine. Evidence-based Complementary and Alternative Medicine, 2004, 1, 35-40.	0.5	26
210	Diminished neurokinin-1 receptor availability in patients with two forms of chronic visceral pain. Pain, 2013, 154, 987-996.	2.0	26
211	Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females. Brain Structure and Function, 2016, 221, 1667-1679.	1.2	26
212	Pain and Interoception Imaging Network (PAIN): A multimodal, multisite, brain-imaging repository for chronic somatic and visceral pain disorders. NeuroImage, 2016, 124, 1232-1237.	2.1	26
213	Sex differences in the influence of body mass index on anatomical architecture of brain networks. International Journal of Obesity, 2017, 41, 1185-1195.	1.6	26
214	Alterations in Cortical Thickness and Subcortical Volume are Associated With Neurological Symptoms and Neck Pain in Patients With Cervical Spondylosis. Neurosurgery, 2019, 84, 588-598.	0.6	26
215	Brain–Gut–Microbiome Interactions and Intermittent Fasting in Obesity. Nutrients, 2021, 13, 584.	1.7	26
216	The Colonic Mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p Are Downregulated in Irritable Bowel Syndrome and Are Associated With Barrier Function and MAPK Signaling. Gastroenterology, 2021, 160, 2409-2422.e19.	0.6	26

#	Article	IF	CITATIONS
217	A double blind parallel group pilot study of the effects of CJ-11,974 and placebo on perceptual and emotional responses to rectosigmoid distension in IBS patients. Gastroenterology, 2000, 118, A846.	0.6	25
218	Current insights into the pathophysiology of irritable bowel syndrome. Current Gastroenterology Reports, 2003, 5, 331-336.	1.1	25
219	Sex-related differences in prepulse inhibition of startle in irritable bowel syndrome (IBS). Biological Psychology, 2010, 84, 272-278.	1.1	25
220	µâ€opioid receptor, βâ€endorphin, and cannabinoid receptorâ€2 are increased in the colonic mucosa of irritable bowel syndrome patients. Neurogastroenterology and Motility, 2019, 31, e13688.	1.6	25
221	The evolving neurobiology of gut feelings. Progress in Brain Research, 2000, 122, 195-206.	0.9	23
222	Alterations in Prefrontal-Limbic Functional Activation and Connectivity in Chronic Stress-Induced Visceral Hyperalgesia. PLoS ONE, 2013, 8, e59138.	1.1	23
223	Towards an integrative model of irritable bowel syndrome. Progress in Brain Research, 2000, 122, 413-423.	0.9	22
224	Early life adversity predicts brain-gut alterations associated with increased stress and mood. Neurobiology of Stress, 2021, 15, 100348.	1.9	22
225	Widespread Hyperalgesia in Adolescents With Symptoms of Irritable Bowel Syndrome: Results From a Large Population-Based Study. Journal of Pain, 2014, 15, 898-906.	0.7	21
226	Altered viscerotopic cortical innervation in patients with irritable bowel syndrome. Neurogastroenterology and Motility, 2015, 27, 1075-1081.	1.6	21
227	Negative Events During Adulthood Are Associated With Symptom Severity and Altered Stress Response in Patients With Irritable Bowel Syndrome. Clinical Gastroenterology and Hepatology, 2019, 17, 2245-2252.	2.4	21
228	Chronic pain in children: structural and resting-state functional brain imaging within a developmental perspective. Pediatric Research, 2020, 88, 840-849.	1.1	21
229	Visceral analgesics: drugs with a great potential in functional disorders?â^†. Current Opinion in Pharmacology, 2008, 8, 697-703.	1.7	20
230	Sex commonalities and differences in the relationship between resilient personality and the intrinsic connectivity of the salience and default mode networks. Biological Psychology, 2015, 112, 107-115.	1.1	20
231	Placebo analgesia: Self-report measures and preliminary evidence of cortical dopamine release associated with placebo response. NeuroImage: Clinical, 2016, 10, 107-114.	1.4	20
232	Improvement in Uncontrolled Eating Behavior after Laparoscopic Sleeve Gastrectomy Is Associated with Alterations in the Brain–Gut–Microbiome Axis in Obese Women. Nutrients, 2020, 12, 2924.	1.7	20
233	Effect of Exclusion Diets on Symptom Severity and the Gut Microbiota in Patients With Irritable Bowel Syndrome. Clinical Gastroenterology and Hepatology, 2022, 20, e465-e483.	2.4	20
234	Characterization of afferent mechanisms in ileoanal pouches. American Journal of Gastroenterology, 1997, 92, 103-8.	0.2	20

#	Article	IF	CITATIONS
235	Sex Commonalities and Differences in Obesityâ€Related Alterations in Intrinsic Brain Activity and Connectivity. Obesity, 2018, 26, 340-350.	1.5	19
236	Altered gray matter volume in sensorimotor and thalamic regions associated with pain in localized provoked vulvodynia: a voxel-based morphometry study. Pain, 2019, 160, 1529-1540.	2.0	19
237	Altered brain structural connectivity in patients with longstanding gut inflammation is correlated with psychological symptoms and disease duration. NeuroImage: Clinical, 2021, 30, 102613.	1.4	19
238	Gene expression profiles in peripheral blood mononuclear cells correlate with salience network activity in chronic visceral pain: A pilot study. Neurogastroenterology and Motility, 2017, 29, e13027.	1.6	18
239	Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. American Journal of Physiology - Renal Physiology, 2018, 315, G140-G157.	1.6	18
240	Catecholaminergic Gene Polymorphisms Are Associated with GI Symptoms and Morphological Brain Changes in Irritable Bowel Syndrome. PLoS ONE, 2015, 10, e0135910.	1.1	18
241	Studying the Brain–Gut Axis with Pharmacological Imaging. Annals of the New York Academy of Sciences, 2008, 1144, 256-264.	1.8	17
242	Inhibition of Gastric Motor Function by Circulating Corticotropinâ€Releasing Factor in Anesthetized Rats. Neurogastroenterology and Motility, 1990, 2, 265-272.	1.6	17
243	Analysis of brain networks and fecal metabolites reveals brain–gut alterations in premenopausal females with irritable bowel syndrome. Translational Psychiatry, 2020, 10, 367.	2.4	17
244	Postmenopausal women with irritable bowel syndrome (IBS) have more severe symptoms than premenopausal women with IBS. Neurogastroenterology and Motility, 2020, 32, e13913.	1.6	17
245	Small intestinal immunopathology and Gl-associated antibody formation in hereditary alpha-tryptasemia. Journal of Allergy and Clinical Immunology, 2021, 148, 813-821.e7.	1.5	17
246	Novel therapeutic approaches in IBS. Current Opinion in Pharmacology, 2007, 7, 598-604.	1.7	16
247	The Challenge of Studying the Biology of Complex, Symptom-Based GI Disorders. Gastroenterology, 2008, 134, 1826-1827.	0.6	15
248	The perfect neuroimaging-genetics-computation storm: collision of petabytes of data, millions of hardware devices and thousands of software tools. Brain Imaging and Behavior, 2014, 8, 311-22.	1.1	15
249	Disease-Related Microstructural Differences in the Brain in Women With Provoked Vestibulodynia. Journal of Pain, 2018, 19, 528.e1-528.e15.	0.7	15
250	Impact of early adverse life events and sex on functional brain networks in patients with urological chronic pelvic pain syndrome (UCPPS): A MAPP Research Network study. PLoS ONE, 2019, 14, e0217610.	1.1	15
251	The hidden link between circadian entropy and mental health disorders. Translational Psychiatry, 2022, 12, .	2.4	15
252	Corticotropin Releasing Factor (CRF) increases postâ€prandial duodenal motor activity in humans. Neurogastroenterology and Motility, 1992, 4, 53-60.	1.6	14

#	Article	IF	CITATIONS
253	The Seminal Microbiome and Male Factor Infertility. Current Sexual Health Reports, 2020, 12, 202-207.	0.4	14
254	Substance P and CGRP mediate motor response of rabbit colon to capsaicin. American Journal of Physiology - Renal Physiology, 1990, 259, G889-G897.	1.6	13
255	Emerging drugs for irritable bowel syndrome. Expert Opinion on Emerging Drugs, 2006, 11, 293-313.	1.0	12
256	Experimental Models of Stress and Pain: Do They Help to Develop New Therapies?. Digestive Diseases, 2009, 27, 55-67.	0.8	12
257	Identification of Spinal Cord MicroRNA and Gene Signatures in a Model of Chronic Stress-Induced Visceral Hyperalgesia in Rat. PLoS ONE, 2015, 10, e0130938.	1.1	12
258	Contraction Coupling in Colonic Smooth Muscle. Annual Review of Physiology, 1992, 54, 395-414.	5.6	11
259	Does mind-body medicine have a role in gastroenterology?. Current Opinion in Gastroenterology, 1997, 13, 1-4.	1.0	11
260	Study protocol of the Bergen brain-gut-microbiota-axis study. Medicine (United States), 2020, 99, e21950.	0.4	11
261	Functional brain rewiring and altered cortical stability in ulcerative colitis. Molecular Psychiatry, 2022, 27, 1792-1804.	4.1	11
262	Sex differences in insular functional connectivity in response to noxious visceral stimulation in rats. Brain Research, 2019, 1717, 15-26.	1.1	10
263	Brain-gut interactions: implications for newer therapy. The European Journal of Surgery, 2003, 164, 50-55.	1.0	9
264	Effects of neurokinins on human colonic motility. Neurogastroenterology and Motility, 1994, 6, 119-127.	1.6	9
265	Deep Brain Stimulation for Obsessive Compulsive Disorder Reduces Symptoms of Irritable Bowel Syndrome in a Single Patient. Clinical Gastroenterology and Hepatology, 2015, 13, 1371-1374.e3.	2.4	9
266	Importance of traumaâ€related fear in patients with irritable bowel syndrome and early adverse life events. Neurogastroenterology and Motility, 2020, 32, e13896.	1.6	9
267	Serotonin Transporter Gene Polymorphism Modulates Activity and Connectivity within an Emotional Arousal Network of Healthy Men during an Aversive Visceral Stimulus. PLoS ONE, 2015, 10, e0123183.	1.1	9
268	A neuropsychosocial signature predicts longitudinal symptom changes in women with irritable bowel syndrome. Molecular Psychiatry, 2022, 27, 1774-1791.	4.1	9
269	Somatic Manifestations of Traumatic Stress. , 2007, , 142-170.		8
270	Corticotropin-releasing hormone receptor 1 (CRH-R1) polymorphisms are associated with irritable bowel syndrome and acoustic startle response. Psychoneuroendocrinology, 2016, 73, 133-141.	1.3	8

#	Article	IF	CITATIONS
271	The Clinical Significance of Posterior Insular Volume in Adolescent Anorexia Nervosa. Psychosomatic Medicine, 2017, 79, 1025-1035.	1.3	8
272	Changes in brain white matter structure are associated with urine proteins in urologic chronic pelvic pain syndrome (UCPPS): A MAPP Network study. PLoS ONE, 2018, 13, e0206807.	1.1	8
273	Association between pain sensitivity and gray matter properties in the sensorimotor network in women with irritable bowel syndrome. Neurogastroenterology and Motility, 2021, 33, e14027.	1.6	8
274	Evidence for decreased activation of central fear circuits by expected aversive visceral stimuli in IBS patients. Gastroenterology, 2000, 118, A137.	0.6	7
275	Structural changes in functional gastrointestinal disorders. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 200-202.	8.2	7
276	Gut microbes and behavior. Current Opinion in Behavioral Sciences, 2019, 28, 72-77.	2.0	7
277	Psychobiotics: Shaping the Mind With Gut Bacteria. American Journal of Gastroenterology, 2019, 114, 1034-1035.	0.2	7
278	Understanding the Heterogeneity of Obesity and the Relationship to the Brain-Gut Axis. Nutrients, 2020, 12, 3701.	1.7	7
279	Cognitive flexibility improves in cognitive behavioral therapy for irritable bowel syndrome but not nonspecific education/support. Behaviour Research and Therapy, 2022, 154, 104033.	1.6	7
280	Evolving pathophysiological model of functional gastrointestinal disorders: implications for treatment. The European Journal of Surgery Supplement: = Acta Chirurgica Supplement, 2002, , 3-9.	0.2	7
281	Neurokinin inhibition of cholinergic myenteric neurons in canine antrum. American Journal of Physiology - Renal Physiology, 1990, 258, G122-G128.	1.6	6
282	Intestinal and Extraintestinal Symptoms in Functional Gastrointestinal Disorders. The European Journal of Surgery, 1998, 164, 29-31.	1.0	6
283	Some of the challenges in drug development for irritable bowel syndrome. Gut, 2001, 48, 585-586.	6.1	6
284	Gastrointestinal disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 106, 607-631.	1.0	6
285	Can regulatory peptides be regarded as words of a biological language. American Journal of Physiology - Renal Physiology, 1991, 261, G171-G184.	1.6	5
286	The Search for Biomarkers and Endophenotypes in Functional Gastrointestinal Disorders. Gastroenterology, 2011, 140, 1377-1379.	0.6	5
287	On Functional Connectivity and Symptom Relief After Gut-directed Hypnotherapy in Irritable Bowel Syndrome: A Preliminary Study. Journal of Neurogastroenterology and Motility, 2019, 25, 478-479.	0.8	5
288	The alternative serotonin transporter promoter P2 impacts gene function in females with irritable bowel syndrome. Journal of Cellular and Molecular Medicine, 2021, 25, 8047-8061.	1.6	5

#	Article	IF	CITATIONS
289	Approaches to the modulation of abdominal pain. Canadian Journal of Gastroenterology & Hepatology, 1999, 13 Suppl A, 65A-70A.	1.8	5
290	752 Regional Brain Morphology Is Associated With Gut Microbial Metabolites in Irritable Bowel Syndrome (IBS). Gastroenterology, 2015, 148, S-142.	0.6	4
291	Altered Structural Covariance of Insula, Cerebellum and Prefrontal Cortex Is Associated with Somatic Symptom Levels in Irritable Bowel Syndrome (IBS). Brain Sciences, 2021, 11, 1580.	1.1	4
292	Brain structure and function changes in ulcerative colitis. NeuroImage Reports, 2021, 1, 100064.	0.5	4
293	The visceral sensitivity index: A novel tool for measuring Glâ€symptomâ€specific anxiety in inflammatory bowel disease. Neurogastroenterology and Motility, 2022, 34, e14384.	1.6	4
294	CNS reactivity in irritable bowel syndrome. Gastroenterology, 2000, 118, A444-A445.	0.6	3
295	Chronic water avoidance stress induces visceral hypersensitivity in male wistar rats. Gastroenterology, 2003, 124, A671.	0.6	3
296	Inflammation in Irritable Bowel Syndrome: Curiosity or Culprit. Journal of Pediatric Gastroenterology and Nutrition, 2004, 39, S751-S753.	0.9	3
297	Commentary on Peripheral and Central Contributions to Hyperalgesia in Irritable Bowel Syndrome. Journal of Pain, 2006, 7, 539-541.	0.7	3
298	Psychosocial Factors in the Care of Patients with Functional Gastrointestinal Disorders. , 0, , 20-37.		3
299	Common component classification: What can we learn from machine learning?. NeuroImage, 2011, 56, 517-524.	2.1	3
300	Stress Reactivity in Traditional Chinese Medicine–Based Subgroups of Patients with Irritable Bowel Syndrome. Journal of Alternative and Complementary Medicine, 2014, 20, 276-283.	2.1	3
301	Sex Differences and Commonalities in the Impact of a Palatable Meal on Thalamic and Insular Connectivity. Nutrients, 2020, 12, 1627.	1.7	3
302	Evidence for selective effect of the 5HT3 antagonist alosetron on amygdala and hippocampal activation in IBS patients. Gastroenterology, 2000, 118, A81.	0.6	2
303	Psychoeducational intervention in IBS improves symptoms and health-related quality of life ȕA controlled study. Gastroenterology, 2003, 124, A398.	0.6	2
304	T1391 The Effect of Neurokinin-1 Receptor Antagonism On Central Responses to Visceral Pain in Irritable Bowel Syndrome (IBS): A Pilot Study. Gastroenterology, 2008, 134, A-545.	0.6	2
305	The Effect of Cognitive Load on Interoceptive Processing. Gastroenterology, 2011, 140, S-368-S-369.	0.6	2
306	Su1983 Mild Visceral Stimuli Interfere With Attentional Processes in IBS but Not Healthy Control Subjects. Gastroenterology, 2012, 142, S-553.	0.6	2

#	Article	IF	CITATIONS
307	Gut sensations – Not so gut specific after all?. Pain, 2013, 154, 627-628.	2.0	2
308	585 Architecture of Anatomical Brain Networks Differs in Irritable Bowel Syndrome Compared to Healthy Controls. Gastroenterology, 2014, 146, S-109.	0.6	2
309	Sa2014 IBS Patients Show Altered Brain Responses During Uncertain, but Not Certain Expectation of Painful Stimulation of the Abdominal Wall. Gastroenterology, 2015, 148, S-384.	0.6	2
310	Mo1948 Bariatric Surgery Is Associated With Changes in the Brain's Reward System Architecture and Eating Behaviors. Gastroenterology, 2016, 150, S824.	0.6	2
311	1059 - Glutamate and Hedonic Eating: Role of the Brain-Gut-Microbiome Axis on Changes on Hedonic Eating after Bariatric Surgery. Gastroenterology, 2018, 154, S-201.	0.6	2
312	751 - Dynamic Changes in Gut Microbial Derived Indole and Phenol Products after Bariatric Surgery and its Relationship to Weight Loss. Gastroenterology, 2018, 154, S-158.	0.6	2
313	Neuroimaging and biomarkers in functional gastrointestinal disorders: What the scientists and clinicians need to know about basic neuroimaging, biomarkers, microbiome, gut and brain interactions. , 2020, , 31-61.		2
314	Dysregulation in Sphingolipid Signaling Pathways is Associated With Symptoms and Functional Connectivity of Pain Processing Brain Regions in Provoked Vestibulodynia. Journal of Pain, 2021, 22, 1586-1605.	0.7	2
315	The Role of Gut-Brain Interactions in Influencing Symptoms of Irritable Bowel Syndrome. Gastroenterology and Hepatology, 2018, 14, 44-46.	0.2	2
316	Brain structure and function changes in inflammatory bowel disease. NeuroImage Reports, 2022, 2, 100097.	0.5	2
317	1055 Tegaserod (TEG) Reduces Brain Responses to Rectal Distension in IBS-C Patients: A Functional Magnetic Resonance Imaging (fMRI) Study. Gastroenterology, 2008, 134, A-158.	0.6	1
318	Su1569 Children With Functional Gastrointestinal Disorders Display Structural Brain Alterations Compared to Healthy Control Subjects. Gastroenterology, 2016, 150, S529.	0.6	1
319	Mo1157 DIFFERENCES IN BRAIN SIGNATURES IN ULCERATIVE COLITIS AND IRRITABLE BOWEL SYNDROME. Gastroenterology, 2020, 158, S-806.	0.6	1
320	Negative Feedback of the Hypothalamic Pituitary Adrenal (HPA) Axis as Assessed by the Dexamethasone-Corticotropin Releasing Factor (CRF) Test in Irritable Bowel Syndrome (IBS). American Journal of Gastroenterology, 2015, 110, S755-S756.	0.2	1
321	Minding the mind. Progress in Brain Research, 2000, 122, 3-8.	0.9	0
322	Is lansoprazole effective for the initial management of young patients with dyspepsia?. Nature Reviews Gastroenterology & Hepatology, 2008, 5, 200-201.	1.7	0
323	Neuroimaging of Brain–Gut Interactions in Functional Gastrointestinal Disorders. , 2012, , 733-740.		0

#	Article	IF	CITATIONS
325	Functional Gastrointestinal Disorders. , 2012, , 868-874.		0