Yuanhua Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9058965/publications.pdf

Version: 2024-02-01

76 papers

3,410 citations

30 h-index 57 g-index

78 all docs 78 docs citations 78 times ranked 3041 citing authors

#	Article	IF	CITATIONS
1	Revealing the Sulfur Redox Paths in a Liâ€"S Battery by an In Situ Hyphenated Technique of Electrochemistry and Mass Spectrometry. Advanced Materials, 2022, 34, e2106618.	21.0	31
2	Modulation of ionic current behaviors based on a dual-channel micro/nano-pipette with ternary-form-charged model. Journal of Electroanalytical Chemistry, 2022, 908, 116089.	3.8	1
3	Detection of Trace Water Based on Electro-oxidation of Molybdenum Disulfide Nanomaterials to Form Molybdenum Oxysulfide. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23850-23858.	8.0	6
4	Electrochemical Study of Ion Transfers Processes at the Interfaces between Water and Trifluorotoluene and Its Derivatives. ChemElectroChem, 2022, 9, .	3.4	3
5	Electrostatic-Gated Kinetics of Rapid Ion Transfers at a Nano-liquid/Liquid Interface. Analytical Chemistry, 2022, 94, 9801-9810.	6.5	O
6	Electrochemically-assisted deposition of toluidine blue-functionalized metal-organic framework films for electrochemical immunosensing of Indole-3-acetic acid. Journal of Electroanalytical Chemistry, 2021, 880, 114855.	3.8	19
7	Electrochemiluminescence Based on a Dual Carbon Ultramicroelectrode with Confined Steady-State Annihilation. Analytical Chemistry, 2021, 93, 4528-4535.	6.5	12
8	Etching-Engineered Low-Voltage Dielectrophoretic Nanotweezers for Trapping of Single Molecules. Analytical Chemistry, 2021, 93, 12549-12555.	6.5	3
9	Multifunctional polyethyleneimine for synthesis of core-shell nanostructures and electrochemiluminescent detection of three AMI biomarkers. Science China Chemistry, 2021, 64, 2230-2238.	8.2	4
10	Investigation of Dendrimer Transfer Behaviors at the Micro-Water/1,2-Dichloroethane Interface Facilitated by Dibenzo-18-Crown-6. Analytical Chemistry, 2021, 93, 1515-1522.	6.5	4
11	Electrochemiluminescent Detection of Proteins Based on Fullerenols Modified Gold Nanoparticles and Triple Amplification Approaches. Analytical Chemistry, 2020, 92, 1890-1897.	6.5	22
12	Electrochemiluminescence detection of cardiac troponin I based on Au–Ag alloy nanourchins. Analyst, The, 2020, 145, 873-879.	3.5	17
13	Electrochemical synthesis of carbon nano onions. Inorganic Chemistry Frontiers, 2020, 7, 4404-4411.	6.0	12
14	Probing non-polarizable liquid/liquid interfaces using scanning ion conductance microscopy. Science China Chemistry, 2020, 63, 411-418.	8.2	5
15	Mechanistic Study of Oxygen Reduction at Liquid/Liquid Interfaces by Hybrid Ultramicroelectrodes and Mass Spectrometry. Journal of the American Chemical Society, 2019, 141, 13212-13221.	13.7	25
16	Detection of Phosphate in Human Blood Based on a Catalytic Hydrogen Wave at a Molybdenum Phosphide Modified Electrode. Analytical Chemistry, 2019, 91, 14666-14671.	6.5	23
17	In Situ Growing Triethanolamine-Functionalized Metal–Organic Frameworks on Two-Dimensional Carbon Nanosheets for Electrochemiluminescent Immunoassay. ACS Sensors, 2019, 4, 2351-2357.	7.8	35
18	A SERS Optophysiological Probe for the Realâ€√Time Mapping and Simultaneous Determination of the Carbonate Concentration and pHâ€Value in a Live Mouse Brain. Angewandte Chemie, 2019, 131, 5310-5314.	2.0	18

#	Article	IF	CITATIONS
19	A SERS Optophysiological Probe for the Realâ€Time Mapping and Simultaneous Determination of the Carbonate Concentration and pHâ€Value in a Live Mouse Brain. Angewandte Chemie - International Edition, 2019, 58, 5256-5260.	13.8	82
20	C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins. Science China Chemistry, 2018, 61, 476-482.	8.2	15
21	Triethanolamine-Modified Gold Nanoparticles Synthesized by a One-Pot Method and Their Application in Electrochemiluminescent Immunoassy. Analytical Chemistry, 2018, 90, 2826-2832.	6.5	53
22	Electrocatalytic Reduction of Hydrogen Peroxide by Pdâ^Ag Nanoparticles Based on the Collisional Approach. ChemElectroChem, 2018, 5, 3021-3027.	3.4	5
23	Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. Journal of the American Chemical Society, 2018, 140, 15904-15915.	13.7	251
24	Fabrication of Tris(bipyridine)ruthenium(II)-Functionalized Metal–Organic Framework Thin Films by Electrochemically Assisted Self-Assembly Technique for Electrochemiluminescent Immunoassay. Analytical Chemistry, 2018, 90, 11622-11628.	6.5	77
25	Ionic Current Behaviors of Dual Nano- and Micropipettes. Analytical Chemistry, 2018, 90, 8592-8599.	6.5	18
26	Fabrication and Use of Nanopipettes in Chemical Analysis. Annual Review of Analytical Chemistry, 2018, 11, 265-286.	5.4	57
27	Electrodeposited Mo ₃ S ₁₃ Films from (NH ₄) _{0 for Electrocatalysis of Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18675-18681.}	8.0	52
28	Influence of supporting electrolytes on the electron transfer and ion transfer coupling processes at a liquid/liquid interface. Journal of Electroanalytical Chemistry, 2017, 805, 32-38.	3.8	2
29	Mass spectrometric snapshots for electrochemical reactions. Chemical Science, 2016, 7, 6684-6688.	7.4	66
30	Probing Electronâ€Transfer and Ionâ€Transfer Coupling Processes at Liquid/Liquid Interfaces with Pipette Electrodes. ChemElectroChem, 2016, 3, 2153-2159.	3.4	3
31	Electrochemical study of ketones as organic phases for the establishment of micro-liquid/liquid interfaces. Journal of Electroanalytical Chemistry, 2016, 781, 76-82.	3.8	3
32	Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of Materials Chemistry A, 2015, 3, 4368-4373.	10.3	100
33	A new strategy to improve the sensitivity and selectivity of dopamine detection. Science China Chemistry, 2015, 58, 892-898.	8.2	2
34	lonic Current Rectification in Organic Solutions with Quartz Nanopipettes. Analytical Chemistry, 2015, 87, 9070-9077.	6.5	47
35	Study of Ion Transfer Coupling with Electron Transfer by Hydrophilic Droplet Electrodes. Analytical Chemistry, 2015, 87, 11819-11825.	6.5	9
36	Electrochemical behaviors of protonated diamines at the micro-water/1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2014, 726, 21-26.	3.8	5

#	Article	IF	CITATIONS
37	Synergistic Catalytic Effect of MoS ₂ Nanoparticles Supported on Gold Nanoparticle Films for a Highly Efficient Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 1877-1881.	3.7	46
38	Fabrication of Metal Nanoelectrodes by Interfacial Reactions. Analytical Chemistry, 2014, 86, 7001-7008.	6.5	30
39	Electrochemically Fabricated Polypyrrole and MoS _{<i>x</i>} Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst. Advanced Materials, 2014, 26, 3761-3766.	21.0	186
40	Facilitated Ion Transfers at the Microâ€Water/1,2â€Dichloroethane Interface by Crown Ether Derivatives. Electroanalysis, 2013, 25, 1080-1084.	2.9	10
41	Studies of Ionic Current Rectification Using Polyethyleneimines Coated Glass Nanopipettes. Analytical Chemistry, 2012, 84, 5565-5573.	6.5	75
42	Investigation of the electrochemical processes related to IT coupling with ET by hydrophilic droplet electrodes. Journal of Electroanalytical Chemistry, 2012, 677-680, 113-119.	3.8	4
43	Ion current rectification and rectification inversion in conical nanopores: a perm-selective view. Physical Chemistry Chemical Physics, 2011, 13, 5430.	2.8	74
44	Probing the structure of a water/nitrobenzene interface by scanning ion conductance microscopy. Chemical Science, 2011, 2, 1523.	7.4	26
45	Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chemical Society Reviews, 2011, 40, 2236.	38.1	167
46	Simulation and experimental verification of the dependence of collection efficiency on the shape of a dual micropipette. Science China Chemistry, 2011, 54, 1311-1318.	8.2	5
47	Investigation of transfer behavior of protonated pyridine at the liquid/liquid interface using dual micropipettes. Journal of Electroanalytical Chemistry, 2011, 656, 125-129.	3.8	5
48	Study of Heterogeneous Electron Transfer on the Graphene/Self-Assembled Monolayer Modified Gold Electrode by Electrochemical Approaches. Journal of Physical Chemistry C, 2010, 114, 14243-14250.	3.1	75
49	Fast Ionâ€Transfer Processes at Nanoscopic Liquid/Liquid Interfaces. Angewandte Chemie - International Edition, 2009, 48, 8010-8013.	13.8	91
50	Anion Transfer at a Micro-Water/1,2-Dichloroethane Interface Facilitated by β-Octafluoro- <i>meso</i> -octamethylcalix[4]pyrrole. Journal of the American Chemical Society, 2008, 130, 14364-14365.	13.7	32
51	Kinetics of Heterogeneous Electron Transfer Reactions at the Externally Polarized Water/ <i>o-</i> Nitrophenyl Octyl Ether Interface. Journal of Physical Chemistry C, 2008, 112, 18117-18124.	3.1	12
52	Fabrication and Characterization of Submicrometer- and Nanometer-Sized Double-Barrel Pipets. Analytical Chemistry, 2006, 78, 7034-7039.	6.5	25
53	Charge-transfer reactions at liquid/liquid interfaces and their applications in bioassays. Analytical and Bioanalytical Chemistry, 2006, 385, 428-432.	3.7	22
54	Ion-Transfer Reactions at the Nanoscopic Water/n-Octanol Interface. Angewandte Chemie - International Edition, 2006, 45, 6861-6864.	13.8	42

#	Article	IF	Citations
55	lon transfer reactions in media of low ionic strength. Journal of Electroanalytical Chemistry, 2005, 579, 89-102.	3.8	26
56	Electrochemical Investigation of Dopamine at the Water/1,2-Dichloroethane Interface. Analytical Chemistry, 2004, 76, 4128-4136.	6.5	81
57	Investigation of electron transfer across the ice/liquid interface by scanning electrochemical microscopy. Science Bulletin, 2003, 48, 39-43.	1.7	0
58	Study of ionizable drugs transfer across the water/ 1,2-dichloroethane interface with phase volume ratio equal to unity using a three-electrode system. Science Bulletin, 2003, 48, 1234-1239.	1.7	1
59	Electrochemical recognition of alkali metal ions at the micro-water 1,2-dichloroethane interface using a calix[4]arene derivative. Journal of Electroanalytical Chemistry, 2003, 553, 43-48.	3.8	30
60	Studies of Electron-Transfer and Charge-Transfer Coupling Processes at a Liquid/Liquid Interface by Double-Barrel Micropipet Technique. Analytical Chemistry, 2003, 75, 6593-6601.	6.5	24
61	Observation of the Marcus Inverted Region of Electron Transfer Reactions at a Liquid/Liquid Interface. Journal of the American Chemical Society, 2003, 125, 9600-9601.	13.7	65
62	Studies of Effect of Phase Volume Ratio on Transfer of Ionizable Species across the Water/1,2-Dichloroethane Interface by a Three-Electrode Setup. Analytical Chemistry, 2003, 75, 4341-4345.	6.5	20
63	Study of Electron-Transfer Reactions across an Externally Polarized Water/1,2-Dichloroethane Interface by Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 2002, 106, 6713-6717.	2.6	48
64	Investigation of Ion Transfer Across the Micro-Water/Nitrobenzene Interface Facilitated by a Fullerene Derivative. Analytical Chemistry, 2002, 74, 373-378.	6.5	19
65	Systematic Investigation of Alkali Metal Ion Transfer Across the Micro- and Nano-Water/1,2-Dichloroethane Interfaces Facilitated by Dibenzo-18-crown-6. Journal of Physical Chemistry B, 2002, 106, 7809-7814.	2.6	53
66	Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative. Electrochimica Acta, 2002, 47, 4477-4483.	5.2	25
67	Voltammetry at a liquid–liquid interface supported on a metallic electrode. Electrochemistry Communications, 2001, 3, 219-223.	4.7	75
68	Voltammetric Study of the Sodium Ion Transfer Across Micro-Water/1,2-Dichloroethane Interface Facilitated by Terminal-Vinyl Liquid Crystal Crown Ether. Electroanalysis, 2001, 13, 1481-1484.	2.9	6
69	Fabrication of agar-gel microelectrodes and their application in the study of ion transfer across the agar–waterâ^£1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2001, 504, 52-58.	3.8	21
70	Dual-Pipet Techniques for Probing Ionic Reactions. Analytical Chemistry, 2000, 72, 510-519.	6.5	36
71	Studying Ionic Reactions by a New Generation/Collection Technique. Journal of the American Chemical Society, 1998, 120, 12700-12701.	13.7	38
72	Probing Ion Transfer at the Liquid/Liquid Interface by Scanning Electrochemical Microscopy (SECM). Journal of Physical Chemistry B, 1998, 102, 9915-9921.	2.6	186

#	Article	IF	CITATIONS
73	Voltammetry at Micropipet Electrodes. Analytical Chemistry, 1998, 70, 3155-3161.	6.5	120
74	Nanometer-Sized Electrochemical Sensors. Analytical Chemistry, 1997, 69, 1627-1634.	6.5	265
75	Fast Kinetic Measurements with Nanometer-Sized Pipets. Transfer of Potassium Ion from Water into Dichloroethane Facilitated by Dibenzo-18-crown-6. Journal of the American Chemical Society, 1997, 119, 8103-8104.	13.7	158
76	Scanning electrochemical microscopy (SECM) of facilitated ion transfer at the liquid liquid interface. Journal of Electroanalytical Chemistry, 1997, 439, 137-143.	3.8	77