Yuanhua Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9058965/publications.pdf Version: 2024-02-01

ΥΠΛΝΗΠΑ SHAO

#	Article	IF	CITATIONS
1	Nanometer-Sized Electrochemical Sensors. Analytical Chemistry, 1997, 69, 1627-1634.	6.5	265
2	Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. Journal of the American Chemical Society, 2018, 140, 15904-15915.	13.7	251
3	Probing Ion Transfer at the Liquid/Liquid Interface by Scanning Electrochemical Microscopy (SECM). Journal of Physical Chemistry B, 1998, 102, 9915-9921.	2.6	186
4	Electrochemically Fabricated Polypyrrole and MoS _{<i>x</i>} Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst. Advanced Materials, 2014, 26, 3761-3766.	21.0	186
5	Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chemical Society Reviews, 2011, 40, 2236.	38.1	167
6	Fast Kinetic Measurements with Nanometer-Sized Pipets. Transfer of Potassium Ion from Water into Dichloroethane Facilitated by Dibenzo-18-crown-6. Journal of the American Chemical Society, 1997, 119, 8103-8104.	13.7	158
7	Voltammetry at Micropipet Electrodes. Analytical Chemistry, 1998, 70, 3155-3161.	6.5	120
8	Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of Materials Chemistry A, 2015, 3, 4368-4373.	10.3	100
9	Fast Ionâ€Transfer Processes at Nanoscopic Liquid/Liquid Interfaces. Angewandte Chemie - International Edition, 2009, 48, 8010-8013.	13.8	91
10	A SERS Optophysiological Probe for the Realâ€Time Mapping and Simultaneous Determination of the Carbonate Concentration and pHâ€Value in a Live Mouse Brain. Angewandte Chemie - International Edition, 2019, 58, 5256-5260.	13.8	82
11	Electrochemical Investigation of Dopamine at the Water/1,2-Dichloroethane Interface. Analytical Chemistry, 2004, 76, 4128-4136.	6.5	81
12	Scanning electrochemical microscopy (SECM) of facilitated ion transfer at the liquid liquid interface. Journal of Electroanalytical Chemistry, 1997, 439, 137-143.	3.8	77
13	Fabrication of Tris(bipyridine)ruthenium(II)-Functionalized Metal–Organic Framework Thin Films by Electrochemically Assisted Self-Assembly Technique for Electrochemiluminescent Immunoassay. Analytical Chemistry, 2018, 90, 11622-11628.	6.5	77
14	Voltammetry at a liquid–liquid interface supported on a metallic electrode. Electrochemistry Communications, 2001, 3, 219-223.	4.7	75
15	Study of Heterogeneous Electron Transfer on the Graphene/Self-Assembled Monolayer Modified Gold Electrode by Electrochemical Approaches. Journal of Physical Chemistry C, 2010, 114, 14243-14250.	3.1	75
16	Studies of Ionic Current Rectification Using Polyethyleneimines Coated Glass Nanopipettes. Analytical Chemistry, 2012, 84, 5565-5573.	6.5	75
17	lon current rectification and rectification inversion in conical nanopores: a perm-selective view. Physical Chemistry Chemical Physics, 2011, 13, 5430.	2.8	74
18	Mass spectrometric snapshots for electrochemical reactions. Chemical Science, 2016, 7, 6684-6688.	7.4	66

Yuanhua Shao

#	Article	IF	CITATIONS
19	Observation of the Marcus Inverted Region of Electron Transfer Reactions at a Liquid/Liquid Interface. Journal of the American Chemical Society, 2003, 125, 9600-9601.	13.7	65
20	Fabrication and Use of Nanopipettes in Chemical Analysis. Annual Review of Analytical Chemistry, 2018, 11, 265-286.	5.4	57
21	Systematic Investigation of Alkali Metal Ion Transfer Across the Micro- and Nano-Water/1,2-Dichloroethane Interfaces Facilitated by Dibenzo-18-crown-6. Journal of Physical Chemistry B, 2002, 106, 7809-7814.	2.6	53
22	Triethanolamine-Modified Gold Nanoparticles Synthesized by a One-Pot Method and Their Application in Electrochemiluminescent Immunoassy. Analytical Chemistry, 2018, 90, 2826-2832.	6.5	53
23	Electrodeposited Mo ₃ S ₁₃ Films from (NH ₄) ₂ Mo ₃ S ₁₃ ·2H ₂ O for Electrocatalysis of Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 18675-18681.	8.0	52
24	Study of Electron-Transfer Reactions across an Externally Polarized Water/1,2-Dichloroethane Interface by Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 2002, 106, 6713-6717.	2.6	48
25	lonic Current Rectification in Organic Solutions with Quartz Nanopipettes. Analytical Chemistry, 2015, 87, 9070-9077.	6.5	47
26	Synergistic Catalytic Effect of MoS ₂ Nanoparticles Supported on Gold Nanoparticle Films for a Highly Efficient Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 1877-1881.	3.7	46
27	Ion-Transfer Reactions at the Nanoscopic Water/n-Octanol Interface. Angewandte Chemie - International Edition, 2006, 45, 6861-6864.	13.8	42
28	Studying Ionic Reactions by a New Generation/Collection Technique. Journal of the American Chemical Society, 1998, 120, 12700-12701.	13.7	38
29	Dual-Pipet Techniques for Probing Ionic Reactions. Analytical Chemistry, 2000, 72, 510-519.	6.5	36
30	In Situ Growing Triethanolamine-Functionalized Metal–Organic Frameworks on Two-Dimensional Carbon Nanosheets for Electrochemiluminescent Immunoassay. ACS Sensors, 2019, 4, 2351-2357.	7.8	35
31	Anion Transfer at a Micro-Water/1,2-Dichloroethane Interface Facilitated by β-Octafluoro- <i>meso</i> -octamethylcalix[4]pyrrole. Journal of the American Chemical Society, 2008, 130, 14364-14365.	13.7	32
32	Revealing the Sulfur Redox Paths in a Li–S Battery by an In Situ Hyphenated Technique of Electrochemistry and Mass Spectrometry. Advanced Materials, 2022, 34, e2106618.	21.0	31
33	Electrochemical recognition of alkali metal ions at the micro-water 1,2-dichloroethane interface using a calix[4]arene derivative. Journal of Electroanalytical Chemistry, 2003, 553, 43-48.	3.8	30
34	Fabrication of Metal Nanoelectrodes by Interfacial Reactions. Analytical Chemistry, 2014, 86, 7001-7008.	6.5	30
35	lon transfer reactions in media of low ionic strength. Journal of Electroanalytical Chemistry, 2005, 579, 89-102.	3.8	26
36	Probing the structure of a water/nitrobenzene interface by scanning ion conductance microscopy. Chemical Science, 2011, 2, 1523.	7.4	26

Υυανημα Shao

#	Article	IF	CITATIONS
37	Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative. Electrochimica Acta, 2002, 47, 4477-4483.	5.2	25
38	Fabrication and Characterization of Submicrometer- and Nanometer-Sized Double-Barrel Pipets. Analytical Chemistry, 2006, 78, 7034-7039.	6.5	25
39	Mechanistic Study of Oxygen Reduction at Liquid/Liquid Interfaces by Hybrid Ultramicroelectrodes and Mass Spectrometry. Journal of the American Chemical Society, 2019, 141, 13212-13221.	13.7	25
40	Studies of Electron-Transfer and Charge-Transfer Coupling Processes at a Liquid/Liquid Interface by Double-Barrel Micropipet Technique. Analytical Chemistry, 2003, 75, 6593-6601.	6.5	24
41	Detection of Phosphate in Human Blood Based on a Catalytic Hydrogen Wave at a Molybdenum Phosphide Modified Electrode. Analytical Chemistry, 2019, 91, 14666-14671.	6.5	23
42	Charge-transfer reactions at liquid/liquid interfaces and their applications in bioassays. Analytical and Bioanalytical Chemistry, 2006, 385, 428-432.	3.7	22
43	Electrochemiluminescent Detection of Proteins Based on Fullerenols Modified Gold Nanoparticles and Triple Amplification Approaches. Analytical Chemistry, 2020, 92, 1890-1897.	6.5	22
44	Fabrication of agar-gel microelectrodes and their application in the study of ion transfer across the agar–waterâ^£1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2001, 504, 52-58.	3.8	21
45	Studies of Effect of Phase Volume Ratio on Transfer of Ionizable Species across the Water/1,2-Dichloroethane Interface by a Three-Electrode Setup. Analytical Chemistry, 2003, 75, 4341-4345.	6.5	20
46	Investigation of Ion Transfer Across the Micro-Water/Nitrobenzene Interface Facilitated by a Fullerene Derivative. Analytical Chemistry, 2002, 74, 373-378.	6.5	19
47	Electrochemically-assisted deposition of toluidine blue-functionalized metal-organic framework films for electrochemical immunosensing of Indole-3-acetic acid. Journal of Electroanalytical Chemistry, 2021, 880, 114855.	3.8	19
48	Ionic Current Behaviors of Dual Nano- and Micropipettes. Analytical Chemistry, 2018, 90, 8592-8599.	6.5	18
49	A SERS Optophysiological Probe for the Realâ€Time Mapping and Simultaneous Determination of the Carbonate Concentration and pH Value in a Live Mouse Brain. Angewandte Chemie, 2019, 131, 5310-5314.	2.0	18
50	Electrochemiluminescence detection of cardiac troponin I based on Au–Ag alloy nanourchins. Analyst, The, 2020, 145, 873-879.	3.5	17
51	C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins. Science China Chemistry, 2018, 61, 476-482.	8.2	15
52	Kinetics of Heterogeneous Electron Transfer Reactions at the Externally Polarized Water/ <i>o-</i> Nitrophenyl Octyl Ether Interface. Journal of Physical Chemistry C, 2008, 112, 18117-18124.	3.1	12
53	Electrochemical synthesis of carbon nano onions. Inorganic Chemistry Frontiers, 2020, 7, 4404-4411.	6.0	12
54	Electrochemiluminescence Based on a Dual Carbon Ultramicroelectrode with Confined Steady-State Annihilation. Analytical Chemistry, 2021, 93, 4528-4535.	6.5	12

Υυανημα Shao

#	Article	IF	CITATIONS
55	Facilitated Ion Transfers at the Microâ€Water/1,2â€Dichloroethane Interface by Crown Ether Derivatives. Electroanalysis, 2013, 25, 1080-1084.	2.9	10
56	Study of Ion Transfer Coupling with Electron Transfer by Hydrophilic Droplet Electrodes. Analytical Chemistry, 2015, 87, 11819-11825.	6.5	9
57	Voltammetric Study of the Sodium Ion Transfer Across Micro-Water/1,2-Dichloroethane Interface Facilitated by Terminal-Vinyl Liquid Crystal Crown Ether. Electroanalysis, 2001, 13, 1481-1484.	2.9	6
58	Detection of Trace Water Based on Electro-oxidation of Molybdenum Disulfide Nanomaterials to Form Molybdenum Oxysulfide. ACS Applied Materials & Interfaces, 2022, 14, 23850-23858.	8.0	6
59	Simulation and experimental verification of the dependence of collection efficiency on the shape of a dual micropipette. Science China Chemistry, 2011, 54, 1311-1318.	8.2	5
60	Investigation of transfer behavior of protonated pyridine at the liquid/liquid interface using dual micropipettes. Journal of Electroanalytical Chemistry, 2011, 656, 125-129.	3.8	5
61	Electrochemical behaviors of protonated diamines at the micro-water/1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2014, 726, 21-26.	3.8	5
62	Electrocatalytic Reduction of Hydrogen Peroxide by Pdâ^'Ag Nanoparticles Based on the Collisional Approach. ChemElectroChem, 2018, 5, 3021-3027.	3.4	5
63	Probing non-polarizable liquid/liquid interfaces using scanning ion conductance microscopy. Science China Chemistry, 2020, 63, 411-418.	8.2	5
64	Investigation of the electrochemical processes related to IT coupling with ET by hydrophilic droplet electrodes. Journal of Electroanalytical Chemistry, 2012, 677-680, 113-119.	3.8	4
65	Multifunctional polyethyleneimine for synthesis of core-shell nanostructures and electrochemiluminescent detection of three AMI biomarkers. Science China Chemistry, 2021, 64, 2230-2238.	8.2	4
66	Investigation of Dendrimer Transfer Behaviors at the Micro-Water/1,2-Dichloroethane Interface Facilitated by Dibenzo-18-Crown-6. Analytical Chemistry, 2021, 93, 1515-1522.	6.5	4
67	Probing Electronâ€Transfer and Ionâ€Transfer Coupling Processes at Liquid/Liquid Interfaces with Pipette Electrodes. ChemElectroChem, 2016, 3, 2153-2159.	3.4	3
68	Electrochemical study of ketones as organic phases for the establishment of micro-liquid/liquid interfaces. Journal of Electroanalytical Chemistry, 2016, 781, 76-82.	3.8	3
69	Etching-Engineered Low-Voltage Dielectrophoretic Nanotweezers for Trapping of Single Molecules. Analytical Chemistry, 2021, 93, 12549-12555.	6.5	3
70	Electrochemical Study of Ion Transfers Processes at the Interfaces between Water and Trifluorotoluene and Its Derivatives. ChemElectroChem, 2022, 9, .	3.4	3
71	A new strategy to improve the sensitivity and selectivity of dopamine detection. Science China Chemistry, 2015, 58, 892-898.	8.2	2
72	Influence of supporting electrolytes on the electron transfer and ion transfer coupling processes at a liquid/liquid interface. Journal of Electroanalytical Chemistry, 2017, 805, 32-38.	3.8	2

Υυανημα Shao

#	Article	IF	CITATIONS
73	Study of ionizable drugs transfer across the water/ 1,2-dichloroethane interface with phase volume ratio equal to unity using a three-electrode system. Science Bulletin, 2003, 48, 1234-1239.	1.7	1
74	Modulation of ionic current behaviors based on a dual-channel micro/nano-pipette with ternary-form-charged model. Journal of Electroanalytical Chemistry, 2022, 908, 116089.	3.8	1
75	Investigation of electron transfer across the ice/liquid interface by scanning electrochemical microscopy. Science Bulletin, 2003, 48, 39-43.	1.7	Ο
76	Electrostatic-Gated Kinetics of Rapid Ion Transfers at a Nano-liquid/Liquid Interface. Analytical Chemistry, 2022, 94, 9801-9810.	6.5	0