
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9058693/publications.pdf Version: 2024-02-01

FENC SU

#	Article	IF	CITATIONS
1	BrÃ,nsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Accounts of Chemical Research, 2011, 44, 1156-1171.	7.6	829
2	Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. Accounts of Chemical Research, 2020, 53, 425-446.	7.6	414
3	Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chemical Communications, 2018, 54, 6607-6621.	2.2	344
4	Catalytic Asymmetric Inverseâ€Electronâ€Demand Oxaâ€Diels–Alder Reaction of Inâ€Situ Generated <i>ortho</i> â€Quinone Methides with 3â€Methylâ€2â€Vinylindoles. Angewandte Chemie - International Edition, 2015, 54, 5460-5464.	7.2	305
5	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie - International Edition, 2017, 56, 116-121.	7.2	274
6	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie - International Edition, 2019, 58, 3014-3020.	7.2	244
7	Catalytic Asymmetric Construction of Axially Chiral Indoleâ€Based Frameworks: An Emerging Area. Chemistry - A European Journal, 2020, 26, 15779-15792.	1.7	203
8	Organocatalytic Asymmetric Arylative Dearomatization of 2,3â€Đisubstituted Indoles Enabled by Tandem Reactions. Angewandte Chemie - International Edition, 2014, 53, 13912-13915.	7.2	190
9	Scaffoldâ€Inspired Enantioselective Synthesis of Biologically Important Spiro[pyrrolidinâ€3,2′â€oxindoles] with Structural Diversity through Catalytic Isatinâ€Derived 1,3â€Dipolar Cycloadditions. Chemistry - A European Journal, 2012, 18, 6885-6894.	1.7	188
10	A Catalytic Asymmetric Isatin-Involved Povarov Reaction: Diastereo- and Enantioselective Construction of Spiro[indolin-3,2′-quinoline] Scaffold. Organic Letters, 2013, 15, 128-131.	2.4	185
11	Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Organic Chemistry Frontiers, 2020, 7, 3967-3998.	2.3	175
12	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> â€Quinone Methides with 2â€Indolylmethanols. Angewandte Chemie - International Edition, 2019, 58, 8703-8708.	7.2	174
13	Recent Advances in Chiral Phosphoric Acid Catalyzed Asymmetric Reactions for the Synthesis of Enantiopure Indole Derivatives. Synthesis, 2015, 47, 1990-2016.	1.2	172
14	Diastereo- and Enantioselective Construction of 3,3′-Pyrrolidinyldispirooxindole Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Journal of Organic Chemistry, 2015, 80, 5737-5744.	1.7	163
15	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie - International Edition, 2019, 58, 15104-15110.	7.2	148
16	Indolylmethanols as Reactants in Catalytic Asymmetric Reactions. Journal of Organic Chemistry, 2017, 82, 7695-7707.	1.7	142
17	Highly diastereo- and enantioselective construction of a spiro[cyclopenta[b]indole-1,3′-oxindole] scaffold via catalytic asymmetric formal [3+2] cycloadditions. Chemical Communications, 2014, 50, 15901-15904.	2.2	139
18	Diastereo―and Enantioselective Construction of a Bispirooxindole Scaffold Containing a Tetrahydroâ€î²â€carboline Moiety through an Organocatalytic Asymmetric Cascade Reaction. Chemistry - A European Journal, 2014, 20, 11382-11389.	1.7	139

#	Article	IF	CITATIONS
19	Catalytic Asymmetric Formal [3+3] Cycloaddition of an Azomethine Ylide with 3â€Indolylmethanol: Enantioselective Construction of a Sixâ€Membered Piperidine Framework. Chemistry - A European Journal, 2014, 20, 2597-2604.	1.7	137
20	Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3â€2-oxindole] framework. Chemical Communications, 2016, 52, 1804-1807.	2.2	136
21	Enantioselective Construction of Spiro[indoline-3,2′-pyrrole] Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions Using Allenes as Equivalents of Alkynes. Journal of Organic Chemistry, 2015, 80, 512-520.	1.7	126
22	Axially Chiral <scp>Arylâ€Alkeneâ€Indole</scp> Framework: A Nascent Member of the Atropisomeric Family and Its Catalytic Asymmetric Construction. Chinese Journal of Chemistry, 2020, 38, 543-552.	2.6	121
23	Metal-Catalyzed (4 + 3) Cyclization of Vinyl Aziridines with <i>para</i> -Quinone Methide Derivatives. ACS Catalysis, 2018, 8, 10234-10240.	5.5	120
24	Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. Journal of the American Chemical Society, 2020, 142, 15686-15696.	6.6	115
25	The Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Ynones with Azomethine Ylides. Organic Letters, 2011, 13, 4680-4683.	2.4	106
26	Green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5565-5568.	1.0	104
27	An Asymmetric Organocatalytic Povarov Reaction with 2-Hydroxystyrenes. Journal of Organic Chemistry, 2012, 77, 6970-6979.	1.7	102
28	Catalytic Asymmetric [4+1] Cyclization of <i>ortho</i> â€Quinone Methides with 3â€Chlorooxindoles. Advanced Synthesis and Catalysis, 2017, 359, 3341-3346.	2.1	102
29	Merging Chiral BrÃ,nsted Acid/Base Catalysis: An Enantioselective [4Â+ 2] Cycloaddition of <i>o</i> Hydroxystyrenes with Azlactones. Journal of Organic Chemistry, 2016, 81, 1681-1688.	1.7	101
30	BrÃ,nsted Acid Catalyzed Asymmetric Diels–Alder Reactions: Stereoselective Construction of Spiro[tetrahydrocarbazole-3,3′-oxindole] Framework. Journal of Organic Chemistry, 2015, 80, 3223-3232.	1.7	97
31	Organocatalytic Atroposelective Synthesis of Nâ^'N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	97
32	Catalyst-Controlled Chemoselective and Enantioselective Reactions of Tryptophols with Isatin-Derived Imines. ACS Catalysis, 2017, 7, 6984-6989.	5.5	94
33	A catalytic asymmetric construction of a tetrahydroquinoline-based spirooxindole framework via a diastereo- and enantioselective decarboxylative [4+2] cycloaddition. Chemical Communications, 2017, 53, 10030-10033.	2.2	94
34	Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angewandte Chemie - International Edition, 2018, 57, 5398-5402.	7.2	93
35	Organocatalytic Asymmetric Cascade Reactions of 7â€Vinylindoles: Diastereo―and Enantioselective Synthesis of C7â€Functionalized Indoles. Chemistry - A European Journal, 2015, 21, 3465-3471.	1.7	90
36	Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines. Journal of Organic Chemistry, 2016, 81, 185-192.	1.7	89

#	Article	IF	CITATIONS
37	Catalytic Enantioselective and Regioselective [3+3] Cycloadditions Using 2â€Indolylmethanols as 3 C Building Blocks. Chemistry - A European Journal, 2016, 22, 17526-17532.	1.7	84
38	Substrate-Controlled Regioselective Arylations of 2-Indolylmethanols with Indoles: Synthesis of Bis(indolyl)methane and 3,3′-Bisindole Derivatives. Journal of Organic Chemistry, 2017, 82, 2462-2471.	1.7	84
39	Catalytic Asymmetric Dearomative [3 + 2] Cycloaddition of Electron-Deficient Indoles with All-Carbon 1,3-Dipoles. Journal of Organic Chemistry, 2018, 83, 2341-2348.	1.7	83
40	Organocatalytic enantioselective and (Z)-selective allylation of 3-indolylmethanol via hydrogen-bond activation. Chemical Communications, 2014, 50, 12054-12057.	2.2	82
41	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie, 2017, 129, 122-127.	1.6	82
42	[4 + 2] Cyclization of <i>para</i> -Quinone Methide Derivatives with Alkynes. Journal of Organic Chemistry, 2018, 83, 1414-1421.	1.7	82
43	Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Organic Chemistry Frontiers, 2021, 8, 2643-2672.	2.3	82
44	Regio―and Enantioselective (3+3) Cycloaddition of Nitrones with 2â€Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie - International Edition, 2021, 60, 2355-2363.	7.2	81
45	BrÃ,nsted acid-catalyzed stereoselective [4+3] cycloadditions of ortho-hydroxybenzyl alcohols with N,N′-cyclic azomethine imines. Chemical Communications, 2017, 53, 2768-2771.	2.2	80
46	Catalytic Asymmetric [4+2] Cyclization of <i>para</i> â€Quinone Methide Derivatives with 3â€Alkylâ€2â€vinylindoles. Advanced Synthesis and Catalysis, 2018, 360, 4225-4235.	2.1	80
47	Catalytic Asymmetric 1,3â€Dipolar Cycloadditions of Alkynes with Isatinâ€Derived Azomethine Ylides: Enantioselective Synthesis of Spiro[indolineâ€3,2′â€pyrrole] Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 2447-2458.	2.1	79
48	Catalytic Asymmetric Construction of the Tryptanthrin Skeleton via an Enantioselective Decarboxylative [4 + 2] Cyclization. Organic Letters, 2017, 19, 3219-3222.	2.4	77
49	Catalytic Asymmetric Synthesis of Axially Chiral 3,3'â€Bisindoles by Direct Coupling of Indole Rings. Chinese Journal of Chemistry, 2022, 40, 2151-2160.	2.6	77
50	Catalytic Asymmetric [3+2] Cycloadditions of Câ€3 Unsubstituted 2â€Indolylmethanols: Regioâ€9 Diastereo― and Enantioselective Construction of the Cyclopenta[<i>b</i>]indole Framework. Advanced Synthesis and Catalysis, 2016, 358, 3797-3808.	2.1	74
51	Organocatalytic Asymmetric Inverse-Electron-Demand 1,3-Dipolar Cycloaddition of <i>N</i> , <i>N</i> , 300 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.7	73
52	Catalytic Asymmetric Aza-ene Reaction of 3-Indolylmethanols with Cyclic Enaminones: Enantioselective Approach to C3-Functionalized Indoles. Journal of Organic Chemistry, 2014, 79, 4635-4643.	1.7	70
53	Catalytic Asymmetric Arylation of 3â€Indolylmethanols: Enantioselective Synthesis of 3,3′â€Bis(indolyl)oxindoles with High Atom Economy. ChemCatChem, 2015, 7, 1211-1221.	1.8	69
54	Atroposelective Construction of Axially Chiral <scp>Alkeneâ€Indole</scp> Scaffolds <i>via</i> Catalytic Enantioselective Addition Reaction of <scp>3â€Alkynyl</scp> â€2â€indolylmethanols ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2163-2171.	2.6	69

#	Article	IF	CITATIONS
55	Enantioselective Direct α-Arylation of Pyrazol-5-ones with 2-Indolylmethanols via Organo-Metal Cooperative Catalysis. Organic Letters, 2017, 19, 1542-1545.	2.4	68
56	Organocatalytic Arylation of 3-Indolylmethanols via Chemo- and Regiospecific C6-Functionalization of Indoles. Journal of Organic Chemistry, 2014, 79, 10390-10398.	1.7	66
57	Atroposelective Synthesis of 3,3'â€Bisindoles Bearing Axial and Central Chirality: Using <scp>Isatinâ€Derived</scp> Imines as Electrophiles. Chinese Journal of Chemistry, 2020, 38, 583-589.	2.6	65
58	Catalytic Chemo-, E/Z-, and Enantioselective Cyclizations of o-Hydroxybenzyl Alcohols with Dimedone-Derived Enaminones. Journal of Organic Chemistry, 2015, 80, 10016-10024.	1.7	64
59	The Application of Nâ€Protected 3â€Vinylindoles in Chiral Phosphoric Acidâ€Catalyzed [3+2] Cyclization with 3â€Indolylmethanols: Monoactivation of the Catalyst to Vinyliminium. Advanced Synthesis and Catalysis, 2016, 358, 2017-2031.	2.1	64
60	Enantioselective Construction of Tetrahydroquinolin-5-one-Based Spirooxindole Scaffold via an Organocatalytic Asymmetric Multicomponent [3 + 3] Cyclization. Journal of Organic Chemistry, 2016, 81, 7898-7907.	1.7	64
61	Catalytic Asymmetric [4 + 1] Cyclization of Benzofuran-Derived Azadienes with 3-Chlorooxindoles. Journal of Organic Chemistry, 2019, 84, 3214-3222.	1.7	64
62	Catalytic Asymmetric Fiveâ€Component Tandem Reaction: Diastereo―and Enantioselective Synthesis of Densely Functionalized Tetrahydropyridines with Biological Importance. Advanced Synthesis and Catalysis, 2013, 355, 1605-1622.	2.1	63
63	Diversity-oriented synthesis of spiro-oxindole-based 2,5-dihydropyrroles via three-component cycloadditions and evaluation on their cytotoxicity. RSC Advances, 2013, 3, 10875.	1.7	63
64	Synergisticâ€Catalysisâ€Enabled Reaction of 2â€Indolymethanols with Oxonium Ylides for the Construction of 3â€Indolylâ€3â€Alkoxy Oxindole Frameworks. Chemistry - an Asian Journal, 2018, 13, 2549-2558.	1.7	62
65	Diastereo- and enantioselective construction of an indole-based 2,3-dihydrobenzofuran scaffold via catalytic asymmetric [3+2] cyclizations of quinone monoimides with 3-vinylindoles. Chemical Communications, 2016, 52, 2968-2971.	2.2	61
66	Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angewandte Chemie, 2018, 130, 5496-5500.	1.6	56
67	Metal-Catalyzed Oxa-[4+2] Cyclizations of Quinone Methides with Alkynyl Benzyl Alcohols. Journal of Organic Chemistry, 2018, 83, 13861-13873.	1.7	55
68	Catalytic Asymmetric Conjugate Addition of Indoles to <i>para</i> -Quinone Methide Derivatives. Journal of Organic Chemistry, 2019, 84, 7829-7839.	1.7	55
69	Asymmetric Organocatalytic Tandem Cyclization/Transfer Hydrogenation: A Synthetic Strategy for Enantioenriched Nitrogen Heterocycles. Advanced Synthesis and Catalysis, 2013, 355, 3715-3726.	2.1	54
70	Catalytic Asymmetric [3+3] Cycloaddition of Azomethine Ylides with C3‣ubstituted 2â€Indolylmethanols. Advanced Synthesis and Catalysis, 2017, 359, 2660-2670.	2.1	51
71	Application of Naphthylindole-Derived Phosphines as Organocatalysts in [4 + 1] Cyclizations of <i>o</i> -Quinone Methides with Morita–Baylis–Hillman Carbonates. Journal of Organic Chemistry, 2018, 83, 10060-10069.	1.7	51
72	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie, 2019, 131, 3046-3052.	1.6	51

#	Article	IF	CITATIONS
73	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie - International Edition, 2022, 61, e202112226.	7.2	49
74	Catalytic asymmetric Povarov reaction of isatin-derived 2-azadienes with 3-vinylindoles. Organic and Biomolecular Chemistry, 2014, 12, 9539-9546.	1.5	48
75	Enantioselective Construction of Cyclopenta[<i>b</i>]indole Scaffolds via the Catalytic Asymmetric [3 + 2] Cycloaddition of 2-Indolylmethanols with <i>p</i> -Hydroxystyrenes. Journal of Organic Chemistry, 2017, 82, 10226-10233.	1.7	48
76	Enantioselective construction of 2,5-dihydropyrrole skeleton with quaternary stereogenic center via catalytic asymmetric 1,3-dipolar cycloaddition involving α-arylglycine esters. Organic and Biomolecular Chemistry, 2013, 11, 1482.	1.5	47
77	Catalytic asymmetric chemodivergent arylative dearomatization of tryptophols. Chemical Communications, 2017, 53, 12124-12127.	2.2	47
78	Catalytic Asymmetric [4+2] Cycloaddition of in Situ Generated <i>o</i> -Quinone Methide Imines with <i>o</i> -Hydroxystyrenes: Diastereo- and Enantioselective Construction of Tetrahydroquinoline Frameworks. Journal of Organic Chemistry, 2018, 83, 614-623.	1.7	46
79	Catalytic Asymmetric Construction of 3,3′â€Spirooxindoles Fused with Sevenâ€Membered Rings by Enantioselective Tandem Reactions. Chemistry - A European Journal, 2014, 20, 15047-15052.	1.7	45
80	Design and diversity-oriented synthesis of novel 1,4-thiazepan-3-ones fused with bioactive heterocyclic skeletons and evaluation of their antioxidant and cytotoxic activities. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 743-746.	1.0	44
81	Diastereo―and Enantioselective Construction of Dihydroisocoumarinâ€Based Spirooxindole Frameworks <i>via</i> Organocatalytic Tandem Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2777-2790.	2.1	44
82	Enantioselective Construction of Cyclic Enaminoneâ€Based 3â€Substituted 3â€Aminoâ€2â€oxindole Scaffolds <i>via</i> Catalytic Asymmetric Additions of Isatinâ€Derived Imines. Advanced Synthesis and Catalysis, 2016, 358, 3069-3083.	2.1	43
83	Design and synthesis of axially chiral aryl-pyrroloindoles via the strategy of organocatalytic asymmetric (2Â+Â3) cyclization. Fundamental Research, 2023, 3, 237-248.	1.6	43
84	Microwaveâ€assisted efficient synthesis of benzo[4,5]imidazo[1,2â€ <i>a</i>]â€pyrimidine derivatives in water under catalystâ€free conditions. Journal of Heterocyclic Chemistry, 2007, 44, 1401-1406.	1.4	42
85	Organocatalytic Chemo-, (<i>E/Z</i>)- and Enantioselective Formal Alkenylation of Indole-Derived Hydroxylactams Using <i>o</i> -Hydroxystyrenes as a Source of Alkenyl Group. Journal of Organic Chemistry, 2014, 79, 7141-7151.	1.7	42
86	Intermediateâ€Dependent Unusual [4+3], [3+2] and Cascade Reactions of 3â€Indolylmethanols: Controllable Chemodivergent and Stereoselective Synthesis of Diverse Indole Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1259-1288.	2.1	42
87	Organocatalytic enantioselective Friedel–Crafts reaction: an efficient access to chiral isoindolo-β-carboline derivatives. Organic and Biomolecular Chemistry, 2015, 13, 4395-4398.	1.5	41
88	Iridium and a BrÃ,nsted acid cooperatively catalyzed chemodivergent and stereoselective reactions of vinyl benzoxazinones with azlactones. Chemical Communications, 2019, 55, 1283-1286.	2.2	41
89	One-pot Synthesis of 10-Methyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione Derivatives under Microwave Heating without Catalyst. Chinese Journal of Chemistry, 2005, 23, 1646-1650.	2.6	40
90	Catalytic asymmetric C2-nucleophilic substitutions of C3-substituted indoles with ortho-hydroxybenzyl alcohols. Organic Chemistry Frontiers, 2017, 4, 2465-2479.	2.3	39

#	Article	IF	CITATIONS
91	Facile synthesis of new 4-aza-podophyllotoxin analogs via microwave-assisted multi-component reactions and evaluation of their cytotoxic activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7119-7123.	1.0	38
92	BrÃ,nsted acid-catalyzed regioselective reactions of 2-indolylmethanols with cyclic enaminone and anhydride leading to C3-functionalized indole derivatives. Organic and Biomolecular Chemistry, 2016, 14, 6932-6936.	1.5	38
93	Cooperative Catalysis-Enabled Asymmetric α-Arylation of Aldehydes Using 2-Indolylmethanols as Arylation Reagents. Journal of Organic Chemistry, 2018, 83, 5027-5034.	1.7	38
94	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> â€Quinone Methides with 2â€Indolylmethanols. Angewandte Chemie, 2019, 131, 8795-8800.	1.6	38
95	Design and Application of <scp>Indoleâ€Based</scp> Allylic Donors for <scp>Pd atalyzed</scp> Decarboxylative Allylation Reactions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1612-1618.	2.6	38
96	Enantioselective Construction of the Biologically Significant Dibenzo[1,4]diazepine Scaffold <i>via</i> Organocatalytic Asymmetric Threeâ€Component Reactions. Advanced Synthesis and Catalysis, 2014, 356, 2009-2019.	2.1	37
97	Enantioselective construction of a 2,2′-bisindolylmethane scaffold via catalytic asymmetric reactions of 2-indolylmethanols with 3-alkylindoles. Organic and Biomolecular Chemistry, 2015, 13, 7993-8000.	1.5	37
98	Catalytic asymmetric <i>de novo</i> construction of dihydroquinazolinone scaffolds <i>via</i> enantioselective decarboxylative [4+2] cycloadditions. Chemical Communications, 2018, 54, 13527-13530.	2.2	37
99	A Simple Synthesis of Furo[3′,4′:5,6]pyrido[2,3-d]pyrimidine Derivatives through Multicomponent Reactions in Water. European Journal of Organic Chemistry, 2007, 2007, 1522-1528.	1.2	36
100	Design of C3â€Alkenylâ€Substituted 2â€Indolylmethanols for Catalytic Asymmetric Interrupted Nazarovâ€Type Cyclization. Advanced Synthesis and Catalysis, 2018, 360, 846-851.	2.1	36
101	Catalytic asymmetric homo-1,3-dipolar cycloadditions of azomethine ylides: diastereo- and enantioselective synthesis of imidazolidines. Tetrahedron: Asymmetry, 2014, 25, 617-624.	1.8	35
102	Application of Homophthalic Anhydrides as 2C Building Blocks in Catalytic Asymmetric Cyclizations of <i>ortho</i> â€Quinone Methides: Diastereo―and Enantioselective Construction of Dihydrocoumarin Frameworks. Advanced Synthesis and Catalysis, 2018, 360, 1128-1137.	2.1	35
103	Regioselective [3+3] Cyclization of 2â€Indolymethanols with Vinylcyclopropanes via Metal Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 3109-3116.	2.1	35
104	Relay Catalysis Enables Hydrogen Gas to Participate in Asymmetric Organocatalytic Hydrogenation. Angewandte Chemie - International Edition, 2012, 51, 11423-11425.	7.2	34
105	Catalytic Enantioselective Arylative Dearomatization of 3â€Methylâ€2â€vinylindoles Enabled by Reactivity Switch. Advanced Synthesis and Catalysis, 2015, 357, 4031-4040.	2.1	34
106	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie, 2019, 131, 15248-15254.	1.6	33
107	BrÃ,nsted Acid-Catalyzed (4 + 3) Cyclization of N,N′-Cyclic Azomethine Imines with Isatoic Anhydrides. Organic Letters, 2019, 21, 598-602.	2.4	33
108	Catalytic chemoselective [3+3] cycloadditions of azomethine ylides with quinone monoimides leading to the construction of a dihydrobenzoxazine scaffold. Chemical Communications, 2015, 51, 11798-11801.	2.2	32

#	Article	IF	CITATIONS
109	Catalytic asymmetric substitution of ortho-hydroxybenzyl alcohols with tetronic acid-derived enamines: enantioselective synthesis of tetronic acid-derived diarylmethanes. Organic Chemistry Frontiers, 2017, 4, 358-368.	2.3	32
110	Phosphine-catalyzed [4 + 2] cyclization of <i>para</i> -quinone methide derivatives with allenes. Organic and Biomolecular Chemistry, 2019, 17, 2361-2369.	1.5	32
111	Organocatalytic Chemo- and Regioselective Oxyarylation of Styrenes via a Cascade Reaction: Remote Activation of Hydroxyl Groups. Journal of Organic Chemistry, 2014, 79, 6143-6152.	1.7	31
112	Diastereo- and Enantioselective Construction of Dihydrobenzo[<i>e</i>]indole Scaffolds via Catalytic Asymmetric [3 + 2] Cycloannulations. Journal of Organic Chemistry, 2018, 83, 9190-9200.	1.7	31
113	Catalytic Asymmetric Synthesis of 3,3′-Bisindoles Bearing Single Axial Chirality. Journal of Organic Chemistry, 2020, 85, 10152-10166.	1.7	31
114	Diastereo- and enantioselective construction of spirooxindole scaffolds through a catalytic asymmetric [3 + 3] cycloaddition. Organic and Biomolecular Chemistry, 2017, 15, 4794-4797.	1.5	29
115	Application of 7â€Indolylmethanols in Catalytic Asymmetric Arylations with Tryptamines: Enantioselective Synthesis of 7â€Indolylmethanes. Advanced Synthesis and Catalysis, 2018, 360, 1850-1860.	2.1	29
116	A diversity-oriented synthesis of pyrazolo[4,3-f]quinoline derivatives with potential bioactivities via microwave-assisted multi-component reactions. Molecular Diversity, 2011, 15, 497-505.	2.1	28
117	Diastereo- and enantioselective construction of biologically important pyrrolo[1,2-a]indole scaffolds via catalytic asymmetric [3 + 2] cyclodimerizations of 3-alkyl-2-vinylindoles. Organic Chemistry Frontiers, 2017, 4, 57-68.	2.3	28
118	Oneâ€pot synthesis of hexahydroquinolines <i>Via</i> a fourâ€component cyclocondensation under microwave irradiation in solvent free conditions: A green chemistry strategy. Journal of Heterocyclic Chemistry, 2006, 43, 985-988.	1.4	27
119	Highly enantioselective synthesis of biologically important 2,5-dihydropyrroles via phosphoric acid-catalyzed three-component reactions and evaluation of their cytotoxicity. Tetrahedron: Asymmetry, 2011, 22, 2056-2064.	1.8	27
120	Organocatalytic asymmetric synthesis of bioactive hexahydropyrrolo[2,3-b]indole-containing tetrasubstituted allenes bearing multiple chiral elements. , 2022, 1, 100007.		27
121	Enantioselective synthesis of biologically important spiro[indoline-3,2′-quinazolines] via catalytic asymmetric isatin-involved tandem reactions. Tetrahedron: Asymmetry, 2013, 24, 1286-1296.	1.8	24
122	Catalyst-Controlled Chemoselective Reaction of 3-Indolylmethanols with Cyclic Enaminones Leading to C2-Functionalized Indoles. Journal of Organic Chemistry, 2015, 80, 1841-1848.	1.7	24
123	Diastereo- and Enantioselective Construction of Biologically Important Chiral 1,3-Dioxolochroman Frameworks via Catalytic Asymmetric [4+2] Cycloaddition. Journal of Organic Chemistry, 2020, 85, 5403-5415.	1.7	24
124	A green and efficient synthesis of furo[3,4â€ <i>e</i>]pyrazolo[3,4â€ <i>b</i>]â€pyridine derivatives in water under microwave irradiation without catalyst. Journal of Heterocyclic Chemistry, 2008, 45, 1103-1108.	1.4	23
125	A facile route to the synthesis of 1,4â€pyranonaphthoquinone derivatives under microwave irradiation without catalyst. Journal of Heterocyclic Chemistry, 2009, 46, 832-836.	1.4	23
126	Diastereo- and Enantioselective Construction of the Hexahydrocoumarin Scaffold via an Organocatalytic Asymmetric [3 + 3] Cyclization. Journal of Organic Chemistry, 2016, 81, 5056-5065.	1.7	23

#	Article	IF	CITATIONS
127	Phosphine-catalyzed regiospecific (3 + 2) cyclization of 3-nitroindoles with allene esters. Organic and Biomolecular Chemistry, 2019, 17, 3894-3901.	1.5	23
128	Design and synthesis of new and significative bifunctional compounds containing two pyrazolo[3,4â€ <i>b</i>]pyridine nucleis through multicomponent reaction under microwave irradiation. Journal of Heterocyclic Chemistry, 2007, 44, 811-814.	1.4	22
129	BrĂnsted acid-catalyzed chemodivergent reactions of ortho-mercaptobenzyl alcohols with 3-alkyl-2-vinylindoles and styrenes: [5+2] cyclization versus hydroxysulfenylation. Chemical Communications, 2016, 52, 5953-5956.	2.2	22
130	Diastereo- and enantioselective construction of chiral cyclopenta[b]indole framework via a catalytic asymmetric tandem cyclization of 2-indolymethanols with 2-naphthols. Organic Chemistry Frontiers, 2018, 5, 1436-1445.	2.3	22
131	Regio- and enantioselective ring-opening reaction of vinylcyclopropanes with indoles under cooperative catalysis. Organic Chemistry Frontiers, 2021, 8, 212-223.	2.3	22
132	Microwaveâ€assisted multicomponent reaction for the synthesis of new and significative bisfunctional compounds containing two furo[3,4â€ <i>b</i>]quinoline and acridinedione skeletons. Journal of Heterocyclic Chemistry, 2009, 46, 742-747.	1.4	21
133	Metalâ€Catalyzed Regiospecific (4+3) Cyclization of 2â€Indolylmethanols with <i>ortho</i> â€Quinone Methides. European Journal of Organic Chemistry, 2020, 2020, 4301-4308.	1.2	21
134	Construction of chiral chroman scaffolds <i>via</i> catalytic asymmetric (4 + 2) cyclizations of <i>para</i> -quinone methide derivatives with 3-vinylindoles. Organic and Biomolecular Chemistry, 2020, 18, 5388-5399.	1.5	21
135	Pot, atom and step economic synthesis of fused three heterocyclic ring compounds under microwave irradiation in water. Journal of Heterocyclic Chemistry, 2008, 45, 1305-1310.	1.4	20
136	Unusual Formal 1,2-Addition of Pyrazolones to 3-Indolylmethanols: Regiospecific Synthesis of 2,3-Disubstituted Indoles. Synthesis, 2015, 47, 1436-1446.	1.2	20
137	Catalyst-free [4 + 2] cyclization of <i>para</i> -quinone methide derivatives with homophthalic anhydrides. Organic and Biomolecular Chemistry, 2018, 16, 9382-9389.	1.5	20
138	Chemodivergent Tandem Cyclizations of 2-Indolylmethanols with Tryptophols: C–N versus C–C Bond Formation. Journal of Organic Chemistry, 2018, 83, 5931-5946.	1.7	20
139	Chiral BrÃ,nsted Acidâ€Catalyzed Asymmetric 1,4â€Addition of Benzofuranâ€Derived Azadienes with 3â€5ubstituted indoles. ChemCatChem, 2020, 12, 4862-4870.	1.8	20
140	Catalytic Asymmetric Substitution Reaction of 3-Substituted 2-Indolylmethanols with 2-Naphthols. Synthesis, 2020, 52, 3684-3692.	1.2	20
141	Insights into 2-Indolylmethanol-Involved Cycloadditions: Origins of Regioselectivity and Enantioselectivity. Journal of Organic Chemistry, 2020, 85, 11641-11653.	1.7	20
142	Organocatalytic C3-functionalization of indolizines: synthesis of biologically important indolizine derivatives. Organic and Biomolecular Chemistry, 2020, 18, 5688-5696.	1.5	20
143	One-pot synthesis of novel <i>N</i> -cyclopropyldecahydroacridine-1,8-dione derivatives under microwave irradiation. Journal of Heterocyclic Chemistry, 2005, 42, 1155-1159.	1.4	19
144	Poly(ethyleneglycol): A versatile and recyclable reaction medium in gaining access to benzo[4,5]imidazo[1,2â€ <i>a</i>]pyrimidines under microwave heating. Journal of Heterocyclic Chemistry, 2009, 46, 664-668.	1.4	19

#	Article	IF	CITATIONS
145	Catalytic Asymmetric Cascade Dearomatization of Tryptamines with Indol-3-ylmethanols: Diastereo- and Enantioselective Synthesis of Structurally Complex Indole Derivatives. Synlett, 2016, 27, 575-580.	1.0	19
146	Organocatalytic [4 + 2] cyclizations of <i>para</i> -quinone methide derivatives with isocyanates. Organic and Biomolecular Chemistry, 2019, 17, 6662-6670.	1.5	19
147	Organocatalytic asymmetric hydroarylation of o-hydroxyl styrenes via remote activation of phenylhydrazones. Tetrahedron: Asymmetry, 2015, 26, 109-117.	1.8	18
148	Design and Application of 3-Alkyl-2-vinylindoles in BrÃ,nsted Acid Catalyzed Reactions. Synlett, 2016, 27, 2515-2524.	1.0	18
149	Catalytic enantioselective and regioselective substitution of 2,3-indolyldimethanols with enaminones. Organic Chemistry Frontiers, 2018, 5, 2657-2667.	2.3	18
150	An efficient synthesis of new benzo[1′,2′:6,7]quinolino[2,3â€ <i>d</i>]â€pyrimidine derivatives <i>via</i> threeâ€component microwaveâ€assisted reaction. Journal of Heterocyclic Chemistry, 2008, 45, 1243-1246.	1.4	17
151	A Green Approach to the Synthesis of Biologically Important Indeno[2,1â€ <i>e</i>]pyrazolo[5,4â€ <i>b</i>]pyridines via Microwaveâ€assisted Multiâ€component Reactions ir Water. Chinese Journal of Chemistry, 2008, 26, 1262-1266.	1 2.6	17
152	Application of 3-Alkyl-2-vinylindoles in Catalytic Asymmetric Dearomative (2+3) Cycloadditions. Journal of Organic Chemistry, 2021, 86, 10427-10439.	1.7	16
153	New reaction of schiff base with dimedone: New method for the acridine derivatives under microwave irradiation. Journal of Heterocyclic Chemistry, 2007, 44, 83-88.	1.4	15
154	An efficient microwaveâ€assisted synthesis furo[3,4â€ <i>b</i>]â€[4,7] phenanthroline and indeno[2,1â€ <i>b</i>][4,7]phenanthroline derivatives in water. Journal of Heterocyclic Chemistry, 2008, 45, 1065-1070.	1.4	15
155	Efficient microwave-assisted synthesis of novel 3-aminohexahydrocoumarin derivatives and evaluation on their cytotoxicity. European Journal of Medicinal Chemistry, 2011, 46, 953-960.	2.6	15
156	BrÃ,nsted Acidâ€Catalyzed [3+2] Cyclodimerization of 3â€Alkyl―2â€vinylindoles Leading to the Diastereoselective Construction of a Pyrroloindole Framework. Advanced Synthesis and Catalysis, 2016, 358, 1093-1102.	2.1	15
157	(4 + 2) cyclization of aza- <i>o</i> -quinone methides with azlactones: construction of biologically important dihydroquinolinone frameworks. Organic and Biomolecular Chemistry, 2021, 19, 1334-1343.	1.5	15
158	Rational Design of Amine Nucleophiles for Dynamic Kinetic Resolution of Azlactones Leading to Highly Enantioselective Synthesis of Bisamides. Asian Journal of Organic Chemistry, 2016, 5, 914-919.	1.3	14
159	Direct C3-arylations of 2-indolylmethanols with tryptamines and tryptophols <i>via</i> an umpolung strategy. Organic and Biomolecular Chemistry, 2018, 16, 1536-1542.	1.5	14
160	A catalytic asymmetric interrupted Nazarov-type cyclization of 2-indolylmethanols with cyclic enaminones. Organic and Biomolecular Chemistry, 2018, 16, 5457-5464.	1.5	14
161	Organocatalytic Reactions of Indoles with Quinone Imine Ketals: An Alternative Metalâ€Free Approach to Bioactive <i>meta</i> â€Indolylanilines. Advanced Synthesis and Catalysis, 2015, 357, 1283-1292.	2.1	13
162	Regio―and Enantioselective (3+3) Cycloaddition of Nitrones with 2â€Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie, 2021, 133, 2385-2393.	1.6	13

#	Article	IF	CITATIONS
163	Organocatalytic Atroposelective Synthesis of Nâ^'N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angewandte Chemie, 2022, 134, .	1.6	13
164	A facile and efficient synthesis of novel pyrimido[5,4â€ <i>b</i>][4,7]phenanthrolineâ€9,11(7 <i>H</i> ,8 <i>H</i> ,10 <i>H</i> ,12 <i>H</i>)â€dione derivatives <i>via</i> microwaveâ€assisted multicomponent reactions. Journal of Heterocyclic Chemistry, 2009, 46, 563-566.	1.4	12
165	A facile and efficient synthesis of <i>N</i> â€substituted furo[3,4â€ <i>b</i>]indeno[2,1â€ <i>e</i>]pyridine analogues of azapodophyllotoxin <i>via</i> microwaveâ€assisted multicomponent reactions. Journal of Heterocyclic Chemistry, 2009, 46, 965-970.	1.4	12
166	Lewis acid-catalyzed [4 + 2] cycloaddition of 3-alkyl-2-vinylindoles with β,γ-unsaturated α-ketoesters. Green Synthesis and Catalysis, 2022, 3, 84-88.	3.7	12
167	An efficient synthesis of new class of pyrazolo[3,4â€ <i>b</i>]pyridineâ€6â€one derivatives by a novel cascade reaction. Journal of Heterocyclic Chemistry, 2007, 44, 1013-1017.	1.4	11
168	A simple procedure for the synthesis of benzoxanthene derivatives under microwave irradiation conditions. Journal of Heterocyclic Chemistry, 2008, 45, 931-934.	1.4	11
169	An efficient method for synthesis of pyrano[3,2â€ <i>c</i>]pyridine derivatives under microwave irradiation. Journal of Heterocyclic Chemistry, 2009, 46, 828-831.	1.4	11
170	Unexpected and Green Synthesis of Azapodophyllotoxin Derivatives via Microwave-Assisted Multicomponent Reactions in Ammonia Water. Synthetic Communications, 2009, 40, 235-241.	1.1	11
171	Green chemistry approach to the synthesis of 2â€arylâ€4â€ferrocenylâ€quinoline derivatives under microwave irradiation. Journal of Heterocyclic Chemistry, 2011, 48, 803-807.	1.4	11
172	BrÃ,nsted Acid Catalyzed C3-Alkylation of 2-Indolylmethanols with Azlactones via an Umpolung Strategy. Synthesis, 2017, 49, 4025-4034.	1.2	11
173	The [4 + 2] cyclization/retro-Mannich reaction cascade of <i>para</i> -quinone methide derivatives with Pd-containing 1,4-dipoles. Organic and Biomolecular Chemistry, 2018, 16, 8395-8402.	1.5	11
174	An efficient and greener approach to the synthesis of 3,5â€dicyanopyridinâ€2(1 <i>H</i>)â€one derivatives in aqueous media under microwave irradiation conditions. Journal of Heterocyclic Chemistry, 2007, 44, 1177-1180.	1.4	10
175	An efficient and clean synthesis of indeno[1,2â€ <i>b</i>]pyrazolo[4,3â€ <i>e</i>] pyridinâ€5(1 <i>H</i>)â€one derivatives under microwave irradiation in water. Journal of Heterocyclic Chemistry, 2010, 47, 1283-1286.	1.4	10
176	Enantioselective Construction of the Biologically Important Cyclopenta[1,4]diazepine Framework Enabled by Asymmetric Catalysis by Chiral Spiroâ€Phosphoric Acid. European Journal of Organic Chemistry, 2015, 2015, 7926-7934.	1.2	10
177	Efficient Synthesis of Chromenes from Vinyl o-Quinone Methides via a BrÃ,nsted Acid Catalyzed Electrocyclization Process. Synthesis, 2018, 50, 2416-2422.	1.2	10
178	An efficient and facile microwaveâ€assisted synthesis of benzo[<i>b</i>][4,7]phenanthroline derivatives in water. Journal of Heterocyclic Chemistry, 2008, 45, 405-410.	1.4	9
179	BrÃ,nsted Acid Catalyzed Dehydrative Arylation of 4-IndolylmethÂanols with Indoles: Efficient Access to Indolyl-Substituted Triarylmethanes. Synthesis, 2018, 50, 3436-3444.	1.2	9
180	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie, 0, , e202112226.	1.6	9

#	Article	IF	CITATIONS
181	An efficient microwaveâ€assisted synthesis of 3,5â€unsubstituted 4â€substitutedâ€6â€arylâ€3,4â€dihydropyridinâ€2(1 <i>H</i>)â€ones derivatives. Journal of Heterocyclic Chemis 2007, 44, 837-842.	tny.4	8
182	Green Approach to the Synthesis of Polyfunctionalized Pyrazolo[4′,3′:5,6]pyrido[2,3- <i>d</i>]pyrimidines via Microwave-Assisted Multicomponent Reactions in Water Without Catalyst. Synthetic Communications, 2009, 40, 135-143.	1.1	8
183	Gallium Bromide-Promoted Dearomative Indole Insertion in 3-Indolylmethanols: Chemoselective and (<i>Z</i> / <i>E</i>)-Selective Synthesis of 3,3′-Bisindole Derivatives. Journal of Organic Chemistry, 2016, 81, 11734-11742.	1.7	8
184	Organocatalytic Generation of o-Quinone Methides from Commonly Used o-Hydroxystyrenes at High Temperature for Enantioselective Cyclization. Synthesis, 2017, 49, 2035-2044.	1.2	8
185	BrÃnsted Acid Catalyzed Dehydrative Nucleophilic Substitution of C3-Substituted 2-Indolylmethanols with Azlactones. Synthesis, 2018, 50, 295-302.	1.2	8
186	An efficient oneâ€pot synthesis of <i>n</i> â€carboxymethylacridineâ€1,8â€dione derivatives under microwave irradiation. Journal of Heterocyclic Chemistry, 2006, 43, 1647-1651.	1.4	7
187	Facile threeâ€component oneâ€pot synthesis of indenoâ€[1,2â€ <i>b</i>]quinolinâ€9,11(6 <i>H</i> ,10 <i>H</i>)â derivatives. Journal of Heterocyclic Chemistry, 2007, 44, 1201-1205.	€dione 1.4	7
188	Fast and Efficient Synthesis of 10â€Arylâ€2,7â€dimethylâ€4,5â€dioxoâ€3,6,9â€ŧrioxaâ€3,4,5,6,9,10â€hexahydro under Microwave Irradiation without Catalyst. Synthetic Communications, 2007, 37, 1603-1608.	anthracer 1.1	1e 6
189	An efficient and direct synthesis of 2â€thiopyridines <i>via</i> microwaveâ€assisted threeâ€component reaction. Journal of Heterocyclic Chemistry, 2009, 46, 886-889.	1.4	6
190	Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides. Molecules, 2021, 26, 6751.	1.7	6
191	Efficient microwaveâ€assisted synthesis and antioxidant activity of 4â€arylideneâ€2â€phenylâ€1 <i>H</i> â€imidazolâ€5(4 <i>H</i>)â€ones. Journal of Heterocyclic Chemistry, 2012,	49 ⁴ 59-63	.5
192	An Efficient Synthesis of Functionalized 2-Oxoindole Derivatives by Organocatalytic Z/E-Selective Benzylic Functionalization of (o-Aminobenzyl)indoles with Isatins. Synthesis, 2016, 48, 4548-4554.	1.2	5
193	C3-Allylation of Indoles via an Iridium-Catalyzed Branch-Selective Ring-Opening Reaction of Vinylcyclopropanes. Synthesis, 2019, 51, 1655-1661.	1.2	5
194	BrÃ,nsted Acidâ€Catalyzed Threeâ€Component 1,3â€Dipolar Cycloadditions of 1,2â€Disubstituted Alkynes with Aldehydeâ€Generated Azomethine Ylides. Journal of Heterocyclic Chemistry, 2015, 52, 1055-1061.	1.4	4
195	Application of Benzofuran-Derived Azadienes as Two-Carbon Building Blocks in Annulations: Chemo- and Diastereoselective Construction of Spiro-Benzofuran Scaffolds. Synthesis, 0, 52, .	1.2	4
196	BrÃ,nsted Acid Catalyzed Reaction of <i>ortho</i> -Hydroxylstyrenes with Indoles: Synthesis of 1,1-Diarylethanes. Chinese Journal of Organic Chemistry, 2016, 36, 1014.	0.6	4
197	An Unexpected Green and Facile Synthesis of 2,6â€Diarylâ€4â€styrylpyridines via Multiâ€component Reactions in Microwaveâ€assisted Solventâ€free Conditions. Chinese Journal of Chemistry, 2009, 27, 1569-1574.	2.6	3
198	Extension of a cascade reaction: Microwaveâ€assisted synthesis of the GFP chromophore derivatives. Journal of Heterocyclic Chemistry, 2010, 47, 354-357.	1.4	3

#	Article	IF	CITATIONS
199	Green, Microwave-Assisted Approach to the Synthesis of Arylidene-Substituted Spiro[4,5]decan-8-one Derivatives in Water. Synthetic Communications, 2010, 40, 615-623.	1.1	3
200	An Unexpected and Efficient Synthesis of Open hain Derivatives of Bistetronic Acid under Microwave Irradiation. Chinese Journal of Chemistry, 2009, 27, 1605-1610.	2.6	2
201	A green and efficient synthesis of 3,3′â€arylidenebis[4â€hydroxyâ€6â€methylâ€2(1 <i>H</i>)â€3â€pyridinone under microwave irradiation. Journal of Heterocyclic Chemistry, 2010, 47, 22-25.]s in water 1.4	. 2
202	Frontispiz: Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie, 2017, 129, .	1.6	1
203	Frontispiece: Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie - International Edition, 2019, 58, .	7.2	1
204	Front Cover Picture: Enantioselective Construction of Cyclic Enaminone-Based 3-Substituted 3-Amino-2-oxindole ScaffoldsviaCatalytic Asymmetric Additions of Isatin-Derived Imines (Adv. Synth.) Tj ETQq0 0 () ஜBT /Ov	eølock 10 Tf
205	Frontispiece: Catalytic Enantioselective and Regioselective [3+3] Cycloadditions Using 2-IndolyImethanols as 3 C Building Blocks. Chemistry - A European Journal, 2016, 22, .	1.7	0
206	Frontispiece: Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0
207	Frontispiz: Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie, 2019, 131, .	1.6	0
208	Frontispiece: Catalytic Asymmetric Construction of Axially Chiral Indoleâ€Based Frameworks: An Emerging Area. Chemistry - A European Journal, 2020, 26, .	1.7	0
209	4,4′-Dianilino-3,3′-(4-chlorobenzylidene)bis[furan-2(5H)-one]. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1513-o1514.	0.2	0