Kong Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9058342/publications.pdf

Version: 2024-02-01

201674 345221 4,602 36 27 36 citations h-index g-index papers 37 37 37 3139 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry A, 2014, 2, 16403-16409.	10.3	514
2	Electromagnetic properties of Si–C–N based ceramics and composites. International Materials Reviews, 2014, 59, 326-355.	19.3	499
3	Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon, 2014, 73, 185-193.	10.3	424
4	Graphene and MXene Nanomaterials: Toward Highâ€Performance Electromagnetic Wave Absorption in Gigahertz Band Range. Advanced Functional Materials, 2020, 30, 2000475.	14.9	356
5	Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters. Journal of Physical Chemistry C, 2013, 117, 19701-19711.	3.1	322
6	Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon, 2019, 145, 61-66.	10.3	237
7	Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon, 2017, 111, 94-102.	10.3	184
8	Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68, 501-510.	10.3	178
9	Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band. Journal of Alloys and Compounds, 2013, 565, 66-72.	5.5	163
10	Dielectric and microwave absorption properties of polymer derived SiCN ceramics annealed in N2 atmosphere. Journal of the European Ceramic Society, 2014, 34, 589-598.	5.7	160
11	Electromagnetic Wave Absorption Properties of ZnO-Based Materials Modified with ZnAl ₂ O ₄ Nanograins. Journal of Physical Chemistry C, 2013, 117, 2135-2146.	3.1	149
12	Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer. Journal of Materials Chemistry C, 2017, 5, 7479-7488.	5.5	146
13	Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures. Journal of the European Ceramic Society, 2013, 33, 1469-1477.	5.7	130
14	Improved dielectric and electromagnetic interference shielding properties of ferrocene-modified polycarbosilane derived SiC/C composite ceramics. Journal of the European Ceramic Society, 2014, 34, 2187-2201.	5.7	117
15	Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics. Journal of the European Ceramic Society, 2014, 34, 205-215.	5.7	110
16	Preparation of titanium carbide nanowires for application in electromagnetic wave absorption. Journal of Alloys and Compounds, 2014, 596, 132-139.	5.5	89
17	Effects of multi-walled carbon nanotubes on the crystallization behavior of PDCs-SiBCN and their improved dielectric and EM absorbing properties. Journal of the European Ceramic Society, 2014, 34, 1053-1061.	5.7	87
18	Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures. Ceramics International, 2015, 41, 4906-4915.	4.8	74

#	Article	IF	CITATIONS
19	Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics. Ceramics International, 2020, 46, 25392-25398.	4.8	74
20	Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13208-13216.	8.0	71
21	Effect of Aluminum Doping on Microwave Absorption Properties of <scp><scp>ZnO</scp></scp> / <scp>/<scp>ZrSiO</scp></scp> 4 Composite Ceramics. Journal of the American Ceramic Society, 2012, 95, 3158-3165.	3.8	67
22	Highâ€Temperature Electromagnetic Wave Absorption Properties of <scp><scp>ZnO</scp>/(scp>/(scp>/scp>/scp>/scp>/scp></scp> 4 Composite Ceramics. Journal of the American Ceramic Society, 2013, 96, 2211-2217.	3.8	54
23	Interfacial polarization dominant CNTs/PyC hollow microspheres as a lightweight electromagnetic wave absorbing material. Carbon, 2022, 193, 216-229.	10.3	53
24	MoO ₂ @MoS ₂ Nanoarchitectures for High-Loading Advanced Lithium-Ion Battery Anodes. Particle and Particle Systems Characterization, 2017, 34, 1600223.	2.3	50
25	Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles. Carbon, 2013, 64, 541-544.	10.3	49
26	Lamellar vanadium nitride nanowires encapsulated in graphene for electromagnetic wave absorption. Chemical Engineering Journal, 2019, 378, 122203.	12.7	44
27	Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes. Carbon, 2021, 183, 322-331.	10.3	40
28	An Ultrastrong and Antibacterial Silver Nanowire/Aligned Cellulose Scaffold Composite Film for Electromagnetic Interference Shielding. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14520-14531.	8.0	30
29	Spinel-Layered Intergrowth Composite Cathodes for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45997-46004.	8.0	26
30	Structure, dielectric properties of novel Ba(Zr,Ti)O3 based ceramics for energy storage application. Ceramics International, 2020, 46, 12080-12087.	4.8	24
31	In-situ formation of carbon nanotubes in pyrolytic carbon–silicon nitride composite ceramics. Ceramics International, 2014, 40, 531-540.	4.8	19
32	Structure, dielectric properties of low-temperature-sintering BaTiO ₃ -based glass–ceramics for energy storage. Journal of Advanced Dielectrics, 2018, 08, 1850041.	2.4	17
33	Design Principles for Tungsten Oxide Electrocatalysts for Water Splitting. ChemElectroChem, 2021, 8, 4427-4440.	3.4	15
34	Synthesis of Structurally Stable 3D MoS ₂ Architectures as High Performance Lithiumâ€ion Battery Anodes. Particle and Particle Systems Characterization, 2016, 33, 311-315.	2.3	14
35	Carbon-Coated Mn ₄ N Nanowires with Abundant Internal Voids for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 7848-7855.	5.0	13
36	Electromagnetic wave absorption properties of N-PyC/Ti3C2Tx hybrids. Journal of Materials Science: Materials in Electronics, 2021, 32, 26105-26115.	2.2	3