Stefan Dullinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9057335/publications.pdf

Version: 2024-02-01

36203 22102 14,635 136 51 113 citations h-index g-index papers 142 142 142 16570 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	5.8	1,543
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
3	Recent Plant Diversity Changes on Europe's Mountain Summits. Science, 2012, 336, 353-355.	6.0	732
4	Are niche-based species distribution models transferable in space?. Journal of Biogeography, 2006, 33, 1689-1703.	1.4	638
5	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	8.1	582
6	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	13.7	580
7	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	4.2	478
8	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	13.7	451
9	Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 203-207.	3.3	442
10	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	3.3	416
11	Naturalized alien flora of the world. Preslia, 2017, 89, 203-274.	1.1	350
12	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	4.2	327
13	A regional impact assessment of climate and landâ€use change on alpine vegetation. Journal of Biogeography, 2003, 30, 401-417.	1.4	325
14	Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. Journal of Ecology, 2004, 92, 241-252.	1.9	320
15	Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 2010, 33, 295-303.	2.1	304
16	Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1848-1853.	3.3	284
17	The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 2018, 93, 1421-1437.	4.7	251
18	The influence of interspecific interactions on species range expansion rates. Ecography, 2014, 37, 1198-1209.	2.1	196

#	Article	IF	Citations
19	The Global Naturalized Alien Flora (Glo <scp>NAF</scp>) database. Ecology, 2019, 100, e02542.	1.5	189
20	Benchmarking novel approaches for modelling speciesÂrange dynamics. Global Change Biology, 2016, 22, 2651-2664.	4.2	180
21	Biological Flora of the British Isles: <i>Ambrosia artemisiifolia</i> . Journal of Ecology, 2015, 103, 1069-1098.	1.9	164
22	A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nature Communications, 2017, 8, 15399.	5.8	153
23	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	4.2	145
24	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
25	Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Science, 2011, 180, 157-167.	1.7	133
26	Does probability of occurrence relate to population dynamics?. Ecography, 2014, 37, 1155-1166.	2.1	127
27	Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 2005, 32, 1117-1127.	1.4	115
28	Remoteness promotes biological invasions on islands worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9270-9275.	3.3	114
29	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	2.2	113
30	Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 2015, 21, 534-547.	1.9	112
31	Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environmental Science and Pollution Research, 2006, 13, 398-405.	2.7	109
32	Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. Journal of Applied Ecology, 2018, 55, 92-98.	1.9	108
33	A resampling approach for evaluating effects of pasture abandonment on subalpine plant species diversity. Journal of Vegetation Science, 2003, 14, 243-252.	1.1	104
34	Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7342-7347.	3.3	102
35	Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB PLANTS, $2016,8,.$	1.2	102
36	Delayed biodiversity change: no time to waste. Trends in Ecology and Evolution, 2015, 30, 375-378.	4.2	92

#	Article	IF	CITATIONS
37	Postâ€glacial migration lag restricts range filling of plants in the European Alps. Global Ecology and Biogeography, 2012, 21, 829-840.	2.7	91
38	Vegetation classification and biogeography of European floodplain forests and alder carrs. Applied Vegetation Science, 2016, 19, 147-163.	0.9	89
39	Diversity, biogeography and the global flows of alien amphibians and reptiles. Diversity and Distributions, 2017, 23, 1313-1322.	1.9	87
40	Climate change will increase the naturalization risk from garden plants in Europe. Global Ecology and Biogeography, 2017, 26, 43-53.	2.7	87
41	Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Systematics and Evolution, 2017, 303, 1093-1108.	0.3	80
42	Invasive alien pests threaten the carbon stored in Europe's forests. Nature Communications, 2018, 9, 1626.	5.8	78
43	Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecology and Biogeography, 2019, 28, 533-543.	2.7	75
44	A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography, 2016, 43, 716-726.	1.4	73
45	Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 2019, 11, plz051.	1.2	72
46	Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history. Biological Invasions, 2009, 11, 2401-2414.	1.2	69
47	Selection for commercial forestry determines global patterns of alien conifer invasions. Diversity and Distributions, 2010, 16, 911-921.	1.9	69
48	Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography, 2014, 23, 620-632.	2.7	63
49	Extinction debts and colonization credits of non-forest plants in the European Alps. Nature Communications, 2019, 10, 4293.	5.8	63
50	Spread of invasive ragweed: climate change, management and how to reduce allergy costs. Journal of Applied Ecology, 2013, 50, 1422-1430.	1.9	62
51	Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation. Biodiversity and Conservation, 2012, 21, 655-669.	1.2	61
52	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	2.7	57
53	Habitat-based conservation strategies cannot compensate for climate-change-induced rangeÂloss. Nature Climate Change, 2017, 7, 823-827.	8.1	55
54	Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports, 2020, 10, 5066.	1.6	55

#	Article	IF	CITATIONS
55	Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Global Change Biology, 2018, 24, e289-e302.	4.2	54
56	Microclimatic patterns correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa Rica. Journal of Tropical Ecology, 2009, 25, 321-330.	0.5	53
57	Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges. PLoS ONE, 2010, 5, e15734.	1.1	53
58	Escaping to the summits: Phylogeography and predicted range dynamics of Cerastium dinaricum, an endangered high mountain plant endemic to the western Balkan Peninsula. Molecular Phylogenetics and Evolution, 2014, 78, 365-374.	1.2	51
59	Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. Journal of Ecology, 2018, 106, 1607-1620.	1.9	50
60	Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Global Ecology and Biogeography, 2020, 29, 1651-1673.	2.7	49
61	Idiosyncratic Responses of High Arctic Plants to Changing Snow Regimes. PLoS ONE, 2014, 9, e86281.	1.1	45
62	European ornamental garden flora as an invasion debt under climate change. Journal of Applied Ecology, 2018, 55, 2386-2395.	1.9	45
63	Hiking trails as conduits for the spread of non-native species in mountain areas. Biological Invasions, 2020, 22, 1121-1134.	1.2	43
64	Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography, 2019, 42, 467-477.	2.1	41
65	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	4.2	40
66	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	2.7	39
67	Effects of snowmelt timing and competition on the performance of alpine snowbed plants. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 15-26.	1.1	38
68	Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography, 2015, 38, 578-589.	2.1	38
69	Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytologist, 2016, 209, 1313-1323.	3.5	38
70	A Framework for Global Twenty-First Century Scenarios and Models of Biological Invasions. BioScience, 2019, 69, 697-710.	2,2	38
71	How well do we know species richness in a wellâ€known continent? Temporal patterns of endemic and widespread species descriptions in the ⟨scp⟩E⟨/scp⟩uropean fauna. Global Ecology and Biogeography, 2013, 22, 29-39.	2.7	36
72	Native, alien, endemic, threatened, and extinct species diversity in European countries. Biological Conservation, 2013, 164, 90-97.	1.9	35

#	Article	IF	CITATIONS
73	Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). Annals of Botany, 2018, 121, 1287-1298.	1.4	35
74	What Will the Future Bring for Biological Invasions on Islands? An Expert-Based Assessment. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	33
75	Experimental Evaluation of Seed Limitation in Alpine Snowbed Plants. PLoS ONE, 2011, 6, e21537.	1.1	33
76	Macroecological drivers of alien conifer naturalizations worldwide. Ecography, 2011, 34, 1076-1084.	2.1	32
77	Modelling the effect of habitat fragmentation on climateâ€driven migration of European forest understorey plants. Diversity and Distributions, 2015, 21, 1375-1387.	1.9	32
78	Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecology Letters, 2018, 21, 392-401.	3.0	32
79	Space matters when defining effective management for invasive plants. Diversity and Distributions, 2014, 20, 1029-1043.	1.9	30
80	Revisiting tree-migration rates: Abies alba (Mill.), a case study. Vegetation History and Archaeobotany, 2014, 23, 113-122.	1.0	30
81	Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. Journal of Biogeography, 2011, 38, 604-614.	1.4	29
82	Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nature Communications, 2022, 13, 615.	5.8	29
83	Setup, efforts and practical experiences of a monitoring program for genetically modified plants - an Austrian case study for oilseed rape and maize. Environmental Sciences Europe, 2011, 23, .	11.0	26
84	A socioâ€ecological model for predicting impacts of landâ€use and climate change on regional plant diversity in the Austrian Alps. Global Change Biology, 2020, 26, 2336-2352.	4.2	26
85	Telling a different story: a global assessment of bryophyte invasions. Biological Invasions, 2013, 15, 1933-1946.	1.2	25
86	Biodiversity models need to represent landâ€use intensity more comprehensively. Global Ecology and Biogeography, 2021, 30, 924-932.	2.7	25
87	Alternative futures for global biological invasions. Sustainability Science, 2021, 16, 1637-1650.	2.5	25
88	Scientific and Normative Foundations for the Valuation of Alien-Species Impacts: Thirteen Core Principles. BioScience, 0, , biw160.	2.2	24
89	Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Forest Ecology and Management, 2021, 479, 118580.	1.4	24
90	Longâ€ŧerm impacts of nitrogen and sulphur deposition on forest floor vegetation in the Northern limestone Alps, Austria. Applied Vegetation Science, 2008, 11, 395-404.	0.9	23

#	Article	IF	CITATIONS
91	Little, but increasing evidence of impacts by alien bryophytes. Biological Invasions, 2014, 16, 1175-1184.	1.2	23
92	Different factors affect the local distribution, persistence and spread of alien tree species in floodplain forests. Basic and Applied Ecology, 2014, 15, 426-434.	1.2	23
93	Postâ€glacial determinants of regional species pools in alpine grasslands. Global Ecology and Biogeography, 2021, 30, 1101-1115.	2.7	22
94	Patch configuration affects alpine plant distribution. Ecography, 2011, 34, 576-587.	2.1	21
95	Recent changes in alpine vegetation differ among plant communities. Journal of Vegetation Science, 2016, 27, 1177-1186.	1.1	20
96	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	1.9	19
97	Role of diversification rates and evolutionary history as a driver of plant naturalization success. New Phytologist, 2021, 229, 2998-3008.	3.5	19
98	Effect of nitrogen availability on forest understorey cover and its consequences for tree regeneration in the Austrian limestone Alps. Plant Ecology, 2010, 209, 11-22.	0.7	18
99	Modelling the <scp>H</scp> olocene migrational dynamics of <i><scp>F</scp>agus sylvatica</i> éscp>L and <i><scp>P</scp>icea abies</i> (<scp>L</scp> .) <scp>H</scp> . <scp>K</scp> arst. Global Ecology and Biogeography, 2014, 23, 658-668.	2.7	18
100	Significant decrease in epiphytic lichen diversity in a remote area in the European Alps, Austria. Basic and Applied Ecology, 2013, 14, 396-403.	1.2	17
101	Introducing AlienScenarios: a project to develop scenarios and models of biological invasions for the 21 st century. NeoBiota, 0, 45, 1-17.	1.0	17
102	A resampling approach for evaluating effects of pasture abandonment on subalpine plant species diversity., 2003, 14, 243.		16
103	Central European forest–steppe: An ecosystem shaped by climate, topography and disturbances. Journal of Biogeography, 2022, 49, 1006-1020.	1.4	16
104	Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Global Ecology and Conservation, 2020, 23, e01113.	1.0	14
105	What is valued in conservation? A framework to compare ethical perspectives. NeoBiota, 0, 72, 45-80.	1.0	14
106	Pluralism in grassland management promotes butterfly diversity in a large Central European conservation area. Journal of Insect Conservation, 2017, 21, 277-285.	0.8	13
107	Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nature Climate Change, 2022, 12, 77-82.	8.1	12
108	Do metal concentrations in moss from the Zackenberg area, Northeast Greenland, provide a baseline for monitoring?. Environmental Science and Pollution Research, 2011, 18, 91-98.	2.7	11

#	Article	IF	CITATIONS
109	Macroecology of global bryophyte invasions at different invasion stages. Ecography, 2015, 38, 488-498.	2.1	11
110	Accounting for imperfect observation and estimating true species distributions in modelling biological invasions. Ecography, 2017, 40, 1187-1197.	2.1	11
111	A new method for jointly assessing effects of climate change and nitrogen deposition on habitats. Biological Conservation, 2018, 228, 52-61.	1.9	11
112	Mating systems of snowbed plant species of the northeastern Calcareous Alps of Austria. Acta Oecologica, 2007, 31, 203-209.	0.5	10
113	Changes in plant lifeâ€form, pollination syndrome and breeding system at a regional scale promoted by land use intensity. Diversity and Distributions, 2015, 21, 1319-1328.	1.9	10
114	Deadwood volumes matter in epixylic bryophyte conservation, but precipitation limits the establishment of substrate-specific communities. Forest Ecology and Management, 2021, 493, 119285.	1.4	9
115	Benefits and costs of controlling three allergenic alien species under climate change and dispersal scenarios in Central Europe. Environmental Science and Policy, 2016, 56, 9-21.	2.4	8
116	Epigenetic Patterns and Geographical Parthenogenesis in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae). International Journal of Molecular Sciences, 2020, 21, 3318.	1.8	8
117	The Alps Vegetation Database – a geo-referenced community-level archive of all terrestrial plants occurring in the Alps. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 331-332.	0.2	8
118	Organic matter accumulation following <i>Pinus mugo</i> Turra establishment in subalpine pastures. Plant Ecology and Diversity, 2008, 1, 59-66.	1.0	7
119	Insect herbivory in alpine grasslands is constrained by community and host traits. Journal of Vegetation Science, 2015, 26, 663-673.	1.1	7
120	Is local trait variation related to total range size of tropical trees?. PLoS ONE, 2018, 13, e0193268.	1.1	7
121	Traits indicating a conservative resource strategy are weakly related to narrow range size in a group of neotropical trees. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 30-37.	1.1	6
122	Future Representation of Species' Climatic Niches in Protected Areas: A Case Study With Austrian Endemics. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
123	A new high-resolution habitat distribution map for Austria, Liechtenstein, southern Germany, South Tyrol and Switzerland. Eco Mont, 2015, 7, 18-29.	0.1	6
124	Validation of and comparison between a semidistributed rainfall–runoff hydrological model (PREVAH) and a spatially distributed snowâ€evolution model (SnowModel) for snow cover prediction in mountain ecosystems. Ecohydrology, 2015, 8, 1181-1193.	1.1	5
125	A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits. PLoS ONE, 2016, 11, e0155547.	1.1	5
126	An integrated, spatioâ€temporal modelling framework for analysing biological invasions. Diversity and Distributions, 2018, 24, 652-665.	1.9	5

#	Article	IF	CITATIONS
127	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	2.2	5
128	Resident vegetation modifies climate-driven elevational shift of a mountain sedge. Alpine Botany, 2021, 131, 13-25.	1.1	5
129	The role of habitat, landscape structure and residence time on plant species invasions in a neotropical landscape. Journal of Tropical Ecology, 2016, 32, 240-249.	0.5	4
130	Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species. Basic and Applied Ecology, 2019, 38, 23-35.	1.2	4
131	Critical Scales for Long-Term Socio-ecological Biodiversity Research. , 2013, , 123-138.		4
132	Postglacial range expansion of highâ€elevation plants is restricted by dispersal ability and habitat specialization. Journal of Biogeography, 2022, 49, 1739-1752.	1.4	4
133	Identifying alien bryophytes taking into account uncertainties: a reply to Patiño & Vanderpoorten (2015). Journal of Biogeography, 2015, 42, 1362-1363.	1.4	3
134	An analysis of weed floras in nurseries: Do polytunnels serve as ports of entry for alien plant species?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 213, 6-11.	0.6	2
135	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	2.1	2
136	Taxonomic, functional and phylogenetic bird diversity response to coffee farming intensity along an elevational gradient in Costa Rica. Agriculture, Ecosystems and Environment, 2022, 326, 107801.	2. 5	1