
Monika Schmoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9056831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichoderma reesei. Trends in Microbiology, 2022, 30, 403-404.	7.7	3
2	Editorial: Light Regulation of Metabolic Networks in Microbes. Frontiers in Microbiology, 2022, 13, 829106.	3.5	1
3	Trichoderma reesei Isolated From Austrian Soil With High Potential for Biotechnological Application. Frontiers in Microbiology, 2021, 12, 552301.	3.5	8
4	New cytochalasans from an endophytic Xylaria species associated with Costa Rican Palicourea elata (Rubiaceae). Natural Product Research, 2021, , 1-8.	1.8	0
5	Resistance Marker- and Gene Gun-Mediated Transformation of Trichoderma reesei. Methods in Molecular Biology, 2021, 2234, 55-62.	0.9	3
6	CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Fungal Genetics and Biology, 2020, 136, 103315.	2.1	24
7	Sexual development, its determinants, and regulation in Trichoderma reesei. , 2020, , 185-206.		3
8	The Lipoxygenase Lox1 Is Involved in Light―and Injury-Response, Conidiation, and Volatile Organic Compound Biosynthesis in the Mycoparasitic Fungus Trichoderma atroviride. Frontiers in Microbiology, 2020, 11, 2004.	3.5	26
9	Colonization of Vitis vinifera L. by the Endophyte Trichoderma sp. Strain T154: Biocontrol Activity Against Phaeoacremonium minimum. Frontiers in Plant Science, 2020, 11, 1170.	3.6	29
10	Comparative Genomic Analysis of Dactylonectria torresensis Strains from Grapevine, Soil and Weed Highlights Potential Mechanisms in Pathogenicity and Endophytic Lifestyle. Journal of Fungi (Basel,) Tj ETQq0 0 C) rg8aT /Ove	erl oc k 10 Tf 5
11	The G-protein Coupled Receptor GPR8 Regulates Secondary Metabolism in Trichoderma reesei. Frontiers in Bioengineering and Biotechnology, 2020, 8, 558996.	4.1	13
12	The Kinase USK1 Regulates Cellulase Gene Expression and Secondary Metabolite Biosynthesis in Trichoderma reesei. Frontiers in Microbiology, 2020, 11, 974.	3.5	13
13	Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei. Scientific Reports, 2019, 9, 10995.	3.3	30
14	YPR2 is a regulator of light modulated carbon and secondary metabolism in Trichoderma reesei. BMC Genomics, 2019, 20, 211.	2.8	43
15	The role of PKAc1 in gene regulation and trichodimerol production in Trichoderma reesei. Fungal Biology and Biotechnology, 2019, 6, 12.	5.1	28
16	Broad Substrate-Specific Phosphorylation Events Are Associated With the Initial Stage of Plant Cell Wall Recognition in Neurospora crassa. Frontiers in Microbiology, 2019, 10, 2317.	3.5	25
17	Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biology and Biotechnology, 2018, 5, 10.	5.1	113
18	Light, stress, sex and carbon – The photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biology, 2018, 122, 479-486.	2.5	44

MONIKA SCHMOLL

#	Article	IF	CITATIONS
19	Gene regulation associated with sexual development and female fertility in different isolates of Trichoderma reesei. Fungal Biology and Biotechnology, 2018, 5, 9.	5.1	20
20	Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing. MSphere, 2017, 2, .	2.9	61
21	Draft Genome Sequence of the Root-Colonizing Fungus <i>Trichoderma harzianum</i> B97. Genome Announcements, 2017, 5, .	0.8	6
22	Omics Analyses of Trichoderma reesei CBS999.97 and QM6a Indicate the Relevance of Female Fertility to Carbohydrate-Active Enzyme and Transporter Levels. Applied and Environmental Microbiology, 2017, 83,	3.1	22
23	Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12. Genomics Data, 2017, 14, 21-23.	1.3	19
24	SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in <i>Trichoderma reesei</i> . Molecular Microbiology, 2017, 106, 742-759.	2.5	39
25	Abundance of Secreted Proteins of Trichoderma reesei Is Regulated by Light of Different Intensities. Frontiers in Microbiology, 2017, 8, 2586.	3.5	45
26	Interrelationships of VEL1 and ENV1 in light response and development in Trichoderma reesei. PLoS ONE, 2017, 12, e0175946.	2.5	26
27	A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. PLoS ONE, 2017, 12, e0182530.	2.5	51
28	A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY. Journal of Biological Chemistry, 2016, 291, 14839-14850.	3.4	23
29	Relevance of Signal Transduction Pathways for Efficient Gene Expression in Fungi. Fungal Biology, 2016, , 309-334.	0.6	5
30	17 Sexual Development in Trichoderma. , 2016, , 457-474.		7
31	The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiology and Molecular Biology Reviews, 2016, 80, 205-327.	6.6	194
32	Protoplast Transformation for Genome Manipulation in Fungi. Fungal Biology, 2015, , 21-40.	0.6	8
33	Structural Biochemistry of a Fungal LOV Domain Photoreceptor Reveals an Evolutionarily Conserved Pathway Integrating Light and Oxidative Stress. Structure, 2015, 23, 116-125.	3.3	51
34	Trichoderma reesei meiosis generates segmentally aneuploid progeny with higher xylanase-producing capability. Biotechnology for Biofuels, 2015, 8, 30.	6.2	30
35	Mating typeâ€dependent partner sensing as mediated by <scp>VEL</scp> 1 in <scp><i>T</i></scp> <i>richoderma reesei</i> . Molecular Microbiology, 2015, 96, 1103-1118.	2.5	59
36	Literature search and data collection on RA for human health for microorganisms used as plant protection products. EFSA Supporting Publications, 2015, 12, 801E.	0.7	0

MONIKA SCHMOLL

#	Article	IF	CITATIONS
37	Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood. PLoS Genetics, 2014, 10, e1004759.	3.5	90
38	Regulation of Glycoside Hydrolase Expression in Trichoderma. , 2014, , 291-308.		20
39	10 Genomics Analysis of Biocontrol biocontrol Species and Industrial Enzyme Producers from the Genus Trichoderma OTrichoderma. , 2014, , 233-264.		7
40	Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reesei. BMC Genomics, 2014, 15, 425.	2.8	42
41	<i>Trichoderma</i> Research in the Genome Era. Annual Review of Phytopathology, 2013, 51, 105-129.	7.8	370
42	Plant Cell Wall Deconstruction by Ascomycete Fungi. Annual Review of Microbiology, 2013, 67, 477-498.	7.3	328
43	Targets of light signalling in Trichoderma reesei. BMC Genomics, 2013, 14, 657.	2.8	81
44	ENVOY Is a Major Determinant in Regulation of Sexual Development in Hypocrea jecorina () Tj ETQq0 0 0 rgBT /0	Dverlock 19	0 Tf 50 462 T
45	Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei. Applied and Environmental Microbiology, 2012, 78, 2168-2178.	3.1	106
46	The role of pheromone receptors for communication and mating in Hypocrea jecorina (Trichoderma) Tj ETQq0 0	0 rgBT /O\ 2.1	verlock 10 Tf
47	Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa. BMC Genomics, 2012, 13, 127.	2.8	70
48	Comparative genomics of <i>Ceriporiopsis subvermispora</i> and <i>Phanerochaete chrysosporium</i> provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5458-5463.	7.1	259
49	Blue Light Acts as a Double-Edged Sword in Regulating Sexual Development of Hypocrea jecorina (Trichoderma reesei). PLoS ONE, 2012, 7, e44969.	2.5	43
50	A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnology for Biofuels, 2012, 5, 1.	6.2	434
51	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	8.8	594
52	New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology, 2011, 48, 631-640.	2.1	102

53	The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics, 2011, 12, 613.	2.8	78

54Assessing the Relevance of Light for Fungi. Advances in Applied Microbiology, 2011, 76, 27-78.2.421

Monika Schmoll

#	Article	IF	CITATIONS
55	Dehydrogenase GRD1 Represents a Novel Component of the Cellulase Regulon in Trichoderma reesei (Hypocrea jecorina). Applied and Environmental Microbiology, 2011, 77, 4553-4563.	3.1	28
56	Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology, 2010, 85, 1259-1277.	3.6	213
57	Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 2010, 87, 787-799.	3.6	525
58	Recombinant production of an Aspergillus nidulans class I hydrophobin (DewA) in Hypocrea jecorina (Trichoderma reesei) is promoter-dependent. Applied Microbiology and Biotechnology, 2010, 88, 95-103.	3.6	25
59	Relevance of the light signaling machinery for cellulase expression in trichoderma reesei (hypocrea) Tj ETQq1 1 0.	784314 rg 1.4	BJ Overloci
60	A novel class of peptide pheromone precursors in ascomycetous fungi. Molecular Microbiology, 2010, 77, 1483-1501.	2.5	51
61	Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genetics and Biology, 2010, 47, 468-476.	2.1	119
62	Trichoderma in the light of day – Physiology and development. Fungal Genetics and Biology, 2010, 47, 909-916.	2.1	102
63	Heterotrimeric G-protein signaling and light response. Communicative and Integrative Biology, 2009, 2, 308-310.	1.4	8
64	The C-Alpha Protein GNA3 of <i>Hypocrea jecorina</i> (Anamorph <i>Trichoderma reesei</i>) Regulates Cellulase Gene Expression in the Presence of Light. Eukaryotic Cell, 2009, 8, 410-420.	3.4	121
65	Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 2009, 10, 567.	2.8	141
66	Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach. Current Genetics, 2009, 55, 81-91.	1.7	32
67	Light-dependent roles of the G-protein $\hat{I}\pm$ subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma) Tj ETQq1 1	0.784314	∔ rgBT /Over 84
68	Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2009, 2, 19.	6.2	353
69	Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. Journal of Biotechnology, 2009, 139, 146-151.	3.8	134
70	Genome, transcriptome, and secretome analysis of wood decay fungus <i>Postia placenta</i> supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1954-1959.	7.1	530
71	Sexual development in the industrial workhorse <i>Trichoderma reesei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13909-13914.	7.1	178
72	Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea) Tj ETQq0 () 0 _{.rg} BT /C)verlock 10 ⁻ 1,116

5

Monika Schmoll

#	Article	IF	CITATIONS
73	The information highways of a biotechnological workhorse – signal transduction in Hypocrea jecorina. BMC Genomics, 2008, 9, 430.	2.8	82
74	Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei). BMC Microbiology, 2008, 8, 174.	3.3	50
75	Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology (United Kingdom), 2008, 154, 1229-1241.	1.8	59
76	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	17.5	1,047
77	Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics, 2007, 8, 449.	2.8	76
78	Antagonism ofPythiumblight of zucchini byHypocrea jecorinadoes not require cellulase gene expression but is improved by carbon catabolite derepression. FEMS Microbiology Letters, 2006, 257, 145-151.	1.8	25
79	In vitro activity and synergism of amphotericin B, azoles and cationic antimicrobials against the emerging pathogen Trichoderma spp Journal of Antimicrobial Chemotherapy, 2006, 58, 1058-1061.	3.0	32
80	Global Carbon Utilization Profiles of Wild-Type, Mutant, and Transformant Strains of Hypocrea jecorina. Applied and Environmental Microbiology, 2006, 72, 2126-2133.	3.1	99
81	ooc1, a unique gene expressed only during growth of Hypocrea jecorina (anamorph: Trichoderma) Tj ETQq1 1 0.7	784314 rg 1.7	BT_/Overlock
82	Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light. Eukaryotic Cell, 2005, 4, 1998-2007.	3.4	147
83	Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genetics and Biology, 2004, 41, 877-887.	2.1	69
84	Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Molecular Genetics and Genomics, 2003, 270, 46-55.	2.1	102
85	Regulation ofTrichodermacellulase formation: lessons in molecular biology from an industrial fungus. Acta Microbiologica Et Immunologica Hungarica, 2003, 50, 125-145.	0.8	78
86	Novel Approaches to Improve Cellulase Biosynthesis for Biofuel Production – Adjusting Signal		7

⁸⁶ Transduction Pathways in the Biotechnological Workhorse Trichoderma reesei. , 0, , .