
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9055608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxyapatite-Supported Palladium Nanoclusters:Â A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 2004, 126, 10657-10666.	6.6	904
2	Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts. Journal of the American Chemical Society, 2002, 124, 11572-11573.	6.6	390
3	Pd and Pd–Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition. ACS Catalysis, 2013, 3, 1114-1119.	5.5	339
4	Surfactantâ€Free Nonaqueous Synthesis of Plasmonic Molybdenum Oxide Nanosheets with Enhanced Catalytic Activity for Hydrogen Generation from Ammonia Borane under Visible Light. Angewandte Chemie - International Edition, 2014, 53, 2910-2914.	7.2	334
5	Ru and Ru–Ni Nanoparticles on TiO ₂ Support as Extremely Active Catalysts for Hydrogen Production from Ammonia–Borane. ACS Catalysis, 2016, 6, 3128-3135.	5.5	310
6	Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances, 2012, 2, 3165.	1.7	286
7	The Synthesis of Size―and Colorâ€Controlled Silver Nanoparticles by Using Microwave Heating and their Enhanced Catalytic Activity by Localized Surface Plasmon Resonance. Angewandte Chemie - International Edition, 2013, 52, 7446-7450.	7.2	225
8	Isolated Single-Atomic Ru Catalyst Bound on a Layered Double Hydroxide for Hydrogenation of CO ₂ to Formic Acid. ACS Catalysis, 2017, 7, 3147-3151.	5.5	225
9	Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chemical Communications, 2001, , 461-462.	2.2	212
10	Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO ₂ to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles. Journal of the American Chemical Society, 2018, 140, 8902-8909.	6.6	202
11	Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances. Journal of the American Chemical Society, 2016, 138, 9316-9324.	6.6	201
12	Amine-functionalized MIL-101(Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chemical Communications, 2014, 50, 11645-11648.	2.2	199
13	Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale, 2020, 12, 11333-11363.	2.8	193
14	Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for Dehydrogenation of Formic Acid at Ambient Temperature. Journal of Physical Chemistry C, 2013, 117, 22805-22810.	1.5	188
15	Plasmonic Au@Pd Nanoparticles Supported on a Basic Metal–Organic Framework: Synergic Boosting of H ₂ Production from Formic Acid. ACS Energy Letters, 2017, 2, 1-7.	8.8	180
16	Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chemical Society Reviews, 2018, 47, 8072-8096.	18.7	176
17	A Plasmonic Molybdenum Oxide Hybrid with Reversible Tunability for Visible‣ightâ€Enhanced Catalytic Reactions. Advanced Materials, 2015, 27, 4616-4621.	11.1	174
18	Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Applied Catalysis B: Environmental, 2017, 218, 555-569.	10.8	173

#	Article	lF	CITATIONS
19	Twoâ€Phase System Utilizing Hydrophobic Metal–Organic Frameworks (MOFs) for Photocatalytic Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2019, 58, 5402-5406.	7.2	169
20	PdAg Nanoparticles Supported on Functionalized Mesoporous Carbon: Promotional Effect of Surface Amine Groups in Reversible Hydrogen Delivery/Storage Mediated by Formic Acid/CO ₂ . ACS Catalysis, 2018, 8, 2277-2285.	5.5	157
21	Design of High-Performance Heterogeneous Metal Catalysts for Green and Sustainable Chemistry. Bulletin of the Chemical Society of Japan, 2006, 79, 981-1016.	2.0	141
22	Development of Rutheniumâ~'Hydroxyapatite-Encapsulated Superparamagnetic γ-Fe2O3Nanocrystallites as an Efficient Oxidation Catalyst by Molecular Oxygen. Chemistry of Materials, 2007, 19, 1249-1256.	3.2	139
23	Hydroxyapatite-Bound Cationic Ruthenium Complexes as Novel Heterogeneous Lewis Acid Catalysts for Dielsâ^'Alder and Aldol Reactions. Journal of the American Chemical Society, 2003, 125, 11460-11461.	6.6	131
24	Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. Journal of Materials Chemistry A, 2015, 3, 5244-5258.	5.2	127
25	Magnetically recoverable heterogeneous catalyst: Palladium nanocluster supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient dehalogenation with molecular hydrogen. Green Chemistry, 2007, 9, 1246.	4.6	126
26	Enhancement of the Photoinduced Oxidation Activity of a Ruthenium(II) Complex Anchored on Silicaâ€Coated Silver Nanoparticles by Localized Surface Plasmon Resonance. Angewandte Chemie - International Edition, 2010, 49, 8598-8601.	7.2	126
27	Applications of Single-site Photocatalysts Implanted within the Silica Matrixes of Zeolite and Mesoporous Silica. Chemistry Letters, 2007, 36, 348-353.	0.7	120
28	A novel conversion process for waste slag: synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities. Journal of Materials Chemistry, 2010, 20, 5052.	6.7	118
29	Efficient heterogeneous oxidation of organosilanes to silanols catalysed by a hydroxyapatite-bound Ru complex in the presence of water and molecular oxygen. New Journal of Chemistry, 2002, 26, 1536-1538.	1.4	110
30	Design and Functionalization of Photocatalytic Systems within Mesoporous Silica. ChemSusChem, 2014, 7, 1528-1536.	3.6	109
31	Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nature Communications, 2021, 12, 3884.	5.8	109
32	Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO ₂ -mediated chemical hydrogen delivery/storage. Chemical Communications, 2017, 53, 4677-4680.	2.2	107
33	Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts. NPG Asia Materials, 2018, 10, 277-292.	3.8	104
34	Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid. Chemistry - A European Journal, 2015, 21, 12085-12092.	1.7	102
35	Synthesis of Ce ions doped metal–organic framework for promoting catalytic H ₂ production from ammonia borane under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 14134-14141.	5.2	102
36	TiO2 photocatalyst for degradation of organic compounds in water and air supported on highly hydrophobic FAU zeolite: Structural, sorptive, and photocatalytic studies. Journal of Catalysis, 2012, 285, 223-234.	3.1	101

#	Article	IF	CITATIONS
37	Enhancement of plasmonic activity by Pt/Ag bimetallic nanocatalyst supported on mesoporous silica in the hydrogen production from hydrogen storage material. Applied Catalysis B: Environmental, 2018, 223, 10-15.	10.8	97
38	Hydrophobic Modification of a Mesoporous Silica Surface Using a Fluorine-Containing Silylation Agent and Its Application as an Advantageous Host Material for the TiO ₂ Photocatalyst. Journal of Physical Chemistry C, 2009, 113, 1552-1559.	1.5	96
39	Enhanced Catalytic Activity on Titanosilicate Molecular Sieves Controlled by Cationâ^'Ï€ Interactions. Journal of the American Chemical Society, 2011, 133, 12462-12465.	6.6	96
40	Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation. Journal of Materials Chemistry A, 2016, 4, 10142-10150.	5.2	95
41	High-surface-area plasmonic MoO _{3â^'x} : rational synthesis and enhanced ammonia borane dehydrogenation activity. Journal of Materials Chemistry A, 2017, 5, 8946-8953.	5.2	94
42	New Approaches Toward the Hydrogen Production From Formic Acid Dehydrogenation Over Pd-Based Heterogeneous Catalysts. Frontiers in Materials, 2019, 6, .	1.2	93
43	A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chemical Communications, 2005, , 3331.	2.2	92
44	A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. Journal of Materials Chemistry A, 2020, 8, 1904-1910.	5.2	89
45	Synthesis and characterization of FePd magnetic nanoparticles modified with chiral BINAP ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction. Physical Chemistry Chemical Physics, 2009, 11, 8949.	1.3	88
46	Non-Noble-Metal Nanoparticle Supported on Metal–Organic Framework as an Efficient and Durable Catalyst for Promoting H ₂ Production from Ammonia Borane under Visible Light Irradiation. ACS Applied Materials & Interfaces, 2016, 8, 21278-21284.	4.0	88
47	Synthesis and characterization of a Pd/Ag bimetallic nanocatalyst on SBA-15 mesoporous silica as a plasmonic catalyst. Journal of Materials Chemistry A, 2015, 3, 18889-18897.	5.2	87
48	Catalytically active, magnetically separable, and water-soluble FePt nanoparticles modified with cyclodextrin for aqueous hydrogenation reactions. Green Chemistry, 2009, 11, 1337.	4.6	83
49	Synthesis of Tris(2,2'-bipyridine)iron(II) Complexes in Zeolite Y Cages:  Influence of Exchanged Alkali Metal Cations on Physicochemical Properties and Catalytic Activity. Journal of Physical Chemistry C, 2008, 112, 2593-2600.	1.5	81
50	Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chemical Communications, 2018, 54, 9270-9273.	2.2	81
51	Controlled Pyrolysis of Niâ€MOFâ€74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Sizeâ€6elective Hydrogenation. Chemistry - A European Journal, 2018, 24, 898-905.	1.7	78
52	A pH-Induced Size Controlled Deposition of Colloidal Ag Nanoparticles on Alumina Support for Catalytic Application. Journal of Physical Chemistry C, 2009, 113, 16850-16854.	1.5	77
53	Enhanced hydrogen production from ammonia borane using controlled plasmonic performance ofÂAu nanoparticles deposited on TiO ₂ . Journal of Materials Chemistry A, 2017, 5, 21883-21892.	5.2	75
54	Localized Surface Plasmon Resonances in Plasmonic Molybdenum Tungsten Oxide Hybrid for Visible-Light-Enhanced Catalytic Reaction. Journal of Physical Chemistry C, 2017, 121, 23531-23540.	1.5	72

#	Article	IF	CITATIONS
55	Colorâ€Controlled Ag Nanoparticles and Nanorods within Confined Mesopores: Microwaveâ€Assisted Rapid Synthesis and Application in Plasmonic Catalysis under Visibleâ€Light Irradiation. Chemistry - A European Journal, 2015, 21, 11885-11893.	1.7	69
56	Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2â°'xS nanowires decorated by Pd nanoparticles. Nano Energy, 2017, 31, 57-63.	8.2	65
57	Fabrication of hydrophobic zeolites using triethoxyfluorosilane and their application as supports for TiO2 photocatalysts. Chemical Communications, 2008, , 4783.	2.2	63
58	New Route for the Preparation of Pd and PdAu Nanoparticles Using Photoexcited Ti-Containing Zeolite as an Efficient Support Material and Investigation of Their Catalytic Properties. Langmuir, 2009, 25, 11180-11187.	1.6	63
59	Transesterifications using a hydrocalumite synthesized from waste slag: an economical and ecological route for biofuel production. Catalysis Science and Technology, 2012, 2, 1842.	2.1	63
60	Hybrid phase 1T/2H-MoS ₂ with controllable 1T concentration and its promoted hydrogen evolution reaction. Nanoscale, 2020, 12, 11908-11915.	2.8	62
61	Progress in design and architecture of metal nanoparticles for catalytic applications. Physical Chemistry Chemical Physics, 2010, 12, 14420.	1.3	61
62	Highly efficient Ru/carbon catalysts prepared by pyrolysis of supported Ru complex towards the hydrogen production from ammonia borane. Applied Catalysis A: General, 2016, 527, 45-52.	2.2	61
63	Evolution of the PVP–Pd Surface Interaction in Nanoparticles through the Case Study of Formic Acid Decomposition. Langmuir, 2016, 32, 12110-12118.	1.6	61
64	Nitrogen-doped carbon materials as a promising platform toward the efficient catalysis for hydrogen generation. Applied Catalysis A: General, 2019, 571, 25-41.	2.2	61
65	Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen. Green Chemistry, 2004, 6, 507.	4.6	60
66	Visible-light-enhanced Suzuki–Miyaura coupling reaction by cooperative photocatalysis with an Ru–Pd bimetallic complex. Chemical Communications, 2014, 50, 14501-14503.	2.2	60
67	Synthesis and Multifunctional Properties of Superparamagnetic Iron Oxide Nanoparticles Coated with Mesoporous Silica Involving Single-Site Tiâ~'Oxide Moiety. Journal of Physical Chemistry C, 2008, 112, 397-404.	1.5	57
68	Palladium Nanoparticles Supported on Titaniumâ€Doped Graphitic Carbon Nitride for Formic Acid Dehydrogenation. Chemistry - an Asian Journal, 2017, 12, 860-867.	1.7	57
69	Controlled release of hydrogen isotope compounds and tunneling effect in the heterogeneously-catalyzed formic acid dehydrogenation. Nature Communications, 2019, 10, 4094.	5.8	56
70	A novel synthetic route to hydroxyapatite–zeolite composite material from steel slag: investigation of synthesis mechanism and evaluation of physicochemical properties. Journal of Materials Chemistry, 2009, 19, 7263.	6.7	55
71	Photoinduced Aerobic Oxidation Driven by Phosphorescence Ir(III) Complex Anchored to Mesoporous Silica. Journal of Physical Chemistry C, 2011, 115, 21358-21362.	1.5	54
72	Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. Chemical Communications, 2019, 55, 6743-6746.	2.2	54

#	Article	IF	CITATIONS
73	PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Applied Catalysis B: Environmental, 2021, 283, 119628.	10.8	54
74	Overcoming Acidic H ₂ O ₂ /Fe(II/III) Redox-Induced Low H ₂ O ₂ Utilization Efficiency by Carbon Quantum Dots Fenton-like Catalysis. Environmental Science & Technology, 2022, 56, 2617-2625.	4.6	54
75	Enhancement of Pd-catalyzed Suzuki–Miyaura coupling reaction assisted by localized surface plasmon resonance of Au nanorods. Catalysis Today, 2015, 242, 381-385.	2.2	53
76	Palladium Copper Chromium Ternary Nanoparticles Constructed Inâ€situ within a Basic Resin: Enhanced Activity in the Dehydrogenation of Formic Acid. ChemCatChem, 2017, 9, 3456-3462.	1.8	53
77	Creation of monomeric La complexes on apatite surfaces and their application as heterogeneous catalysts for Michael reactions. New Journal of Chemistry, 2006, 30, 44-52.	1.4	52
78	Applications of Single-site Photocatalysts to the Design of Unique Surface Functional Materials. Catalysis Surveys From Asia, 2008, 12, 88-100.	1.0	52
79	Silver Nanoparticles Supported on CeO ₂ â€SBAâ€15 by Microwave Irradiation Possess Metal–Support Interactions and Enhanced Catalytic Activity. Chemistry - A European Journal, 2014, 20, 15746-15752.	1.7	52
80	Enhancement of Agâ€Based Plasmonic Photocatalysis in Hydrogen Production from Ammonia Borane by the Assistance of Singleâ€6ite Tiâ€Oxide Moieties within a Silica Framework. Chemistry - A European Journal, 2017, 23, 3616-3622.	1.7	51
81	Recent Progress on Black Phosphorusâ€Based Materials for Photocatalytic Water Splitting. Small Methods, 2018, 2, 1800212.	4.6	50
82	Design of Single‧ite Photocatalysts by Using Metal–Organic Frameworks as a Matrix. Chemistry - an Asian Journal, 2018, 13, 1767-1779.	1.7	49
83	TiO2 photocatalyst loaded on hydrophobic Si3N4 support for efficient degradation of organics diluted in water. Applied Catalysis A: General, 2008, 350, 164-168.	2.2	48
84	Highly Dispersed Platinum Nanoparticles on TiO ₂ Prepared by Using the Microwaveâ€Assisted Deposition Method: An Efficient Photocatalyst for the Formation of H ₂ and N ₂ from Aqueous NH ₃ . Chemistry - an Asian Journal, 2012, 7, 1366-1371.	1.7	47
85	Plasmonic metal/Mo _x W _{1â^²x} O _{3â^²y} for visible-light-enhanced H ₂ production from ammonia borane. Journal of Materials Chemistry A, 2018, 6, 10932-10938.	5.2	47
86	Catalytic investigations of carbon–carbon bond-forming reactions by a hydroxyapatite-bound palladium complex. New Journal of Chemistry, 2005, 29, 1174.	1.4	46
87	Enhanced formic acid dehydrogenation by the synergistic alloying effect of PdCo catalysts supported on graphitic carbon nitride. International Journal of Hydrogen Energy, 2019, 44, 28483-28493.	3.8	46
88	Synthesis of zeolite from steel slag and its application as a support of nano-sized TiO2 photocatalyst. Journal of Materials Science, 2008, 43, 2407-2410.	1.7	44
89	Investigation of Size Sensitivity in the Hydrogen Production from Formic Acid over Carbonâ€Supported Pd Nanoparticles. ChemistrySelect, 2016, 1, 1879-1886.	0.7	44
90	Some novel porous materials for selective catalytic oxidations. Materials Today, 2020, 32, 244-259.	8.3	44

#	Article	IF	CITATIONS
91	Active Site Design in a Core–Shell Nanostructured Catalyst for a Oneâ€Pot Oxidation Reaction. Chemistry - A European Journal, 2011, 17, 9047-9051.	1.7	43
92	Enhanced hydrogenation activity of nano-sized Pd–Ni bimetal particles on Ti-containing mesoporous silica prepared by a photo-assisted deposition method. Journal of Materials Chemistry, 2012, 22, 16243.	6.7	43
93	PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production. Scientific Reports, 2019, 9, 15675.	1.6	43
94	Metal–organic framework-based nanomaterials for photocatalytic hydrogen peroxide production. Physical Chemistry Chemical Physics, 2020, 22, 14404-14414.	1.3	43
95	Intercalation of Pt(II) Terpyridine Complexes into Layered K ₄ Nb ₆ O ₁₇ and Visible-Light-Driven Photocatalytic Production of H ₂ . Journal of Physical Chemistry C, 2012, 116, 18873-18877.	1.5	42
96	Hybrid Mesoporousâ€Silica Materials Functionalized by Pt ^{II} Complexes: Correlation between the Spatial Distribution of the Active Center, Photoluminescence Emission, and Photocatalytic Activity. Chemistry - A European Journal, 2012, 18, 11371-11378.	1.7	42
97	Metal Complexes Supported on Solid Matrices for Visibleâ€Lightâ€Driven Molecular Transformations. Chemistry - A European Journal, 2016, 22, 11122-11137.	1.7	42
98	Influence of Exchanged Alkali Metal Cations within Zeolite Y Cages on Spectroscopic and Photooxidation Properties of the Incorporated Tris(2,2′-bipyridine)ruthenium(II) Complexes. Journal of Physical Chemistry C, 2008, 112, 19449-19455.	1.5	41
99	Plasmonic Ru/hydrogen molybdenum bronzes with tunable oxygen vacancies for light-driven reduction of <i>p</i> -nitrophenol. Journal of Materials Chemistry A, 2019, 7, 3783-3789.	5.2	41
100	Construction of Hybrid MoS ₂ Phase Coupled with SiC Heterojunctions with Promoted Photocatalytic Activity for 4-Nitrophenol Degradation. Langmuir, 2020, 36, 1174-1182.	1.6	41
101	Anchoring of Pt(II) Pyridyl Complex to Mesoporous Silica Materials: Enhanced Photoluminescence Emission at Room Temperature and Photooxidation Activity using Molecular Oxygen. Journal of Physical Chemistry C, 2011, 115, 1044-1050.	1.5	40
102	Insights on palladium decorated nitrogen-doped carbon xerogels for the hydrogen production from formic acid. Catalysis Today, 2019, 324, 90-96.	2.2	40
103	Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Applied Surface Science, 2008, 254, 7604-7607.	3.1	39
104	Structural Design of Pd/SiO ₂ @Ti-Containing Mesoporous Silica Core–Shell Catalyst for Efficient One-Pot Oxidation Using in Situ Produced H ₂ O ₂ . Journal of Physical Chemistry C, 2012, 116, 14360-14367.	1.5	39
105	Defect Engineering of MoS ₂ and Its Impacts on Electrocatalytic and Photocatalytic Behavior in Hydrogen Evolution Reactions. Chemistry - an Asian Journal, 2019, 14, 278-285.	1.7	39
106	PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: the promotional effect of phenylamine moieties on CO ₂ transformation to formic acid. Journal of Materials Chemistry A, 2019, 7, 16356-16363.	5.2	39
107	Introduction of a secondary ligand into titanium-based metal–organic frameworks for visible-light-driven photocatalytic hydrogen peroxide production from dioxygen reduction. Journal of Materials Chemistry A, 2021, 9, 2815-2821.	5.2	39
108	Revealing hydrogen spillover pathways in reducible metal oxides. Chemical Science, 2022, 13, 8137-8147.	3.7	39

#	Article	IF	CITATIONS
109	Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. Journal of Materials Chemistry, 2009, 19, 6745.	6.7	38
110	Visible-light-driven hydrogen peroxide production from water and dioxygen by perylenetetracarboxylic diimide modified titanium-based metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 26371-26380.	5.2	38
111	Synthesis and Characterization of Coreâ^'Shell FePt@Ti-Containing Silica Spherical Nanocomposite as a Catalyst Carrier for Liquid-Phase Reactions. Journal of Physical Chemistry C, 2008, 112, 16478-16483.	1.5	37
112	Controlled synthesis of carbon-supported Co catalysts from single-sites to nanoparticles: characterization of the structural transformation and investigation of their oxidation catalysis. Physical Chemistry Chemical Physics, 2017, 19, 4967-4974.	1.3	37
113	CoO _x -decorated CeO ₂ heterostructures: effects of morphology on their catalytic properties in diesel soot combustion. Nanoscale, 2020, 12, 1779-1789.	2.8	37
114	Synthesis of mesoporous silica-supported Ag nanorod-based bimetallic catalysts and investigation of their plasmonic activity under visible light irradiation. Catalysis Science and Technology, 2017, 7, 2551-2558.	2.1	36
115	Screening of Carbon-Supported PdAg Nanoparticles in the Hydrogen Production from Formic Acid. Industrial & Engineering Chemistry Research, 2016, 55, 7612-7620.	1.8	35
116	Synthesis of carbon-supported Pd–Co bimetallic catalysts templated by Co nanoparticles using the galvanic replacement method for selective hydrogenation. RSC Advances, 2017, 7, 22294-22300.	1.7	35
117	Plasmonic catalysis of Ag nanoparticles deposited on CeO2 modified mesoporous silica for the nitrostyrene reduction under light irradiation conditions. Catalysis Today, 2019, 324, 83-89.	2.2	35
118	Photoluminescence Emission and Photoinduced Hydrogen Production Driven by Pt ^{II} Pyridyl Complexes Anchored onto Mesoporous Silica. Chemistry - A European Journal, 2012, 18, 415-418.	1.7	34
119	Synthesis of a Fe–Ni Alloy on a Ceria Support as a Nobleâ€Metalâ€Free Catalyst for Hydrogen Production from Chemical Hydrogen Storage Materials. ChemCatChem, 2015, 7, 1285-1291.	1.8	33
120	Roomâ€Temperature and Aqueousâ€Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visibleâ€Lightâ€Enhanced Hydrogen Generation. Chemistry - an Asian Journal, 2016, 11, 2377-2381.	1.7	33
121	Engineering of Surface Environment of Pd Nanoparticle Catalysts on Carbon Support with Pyrene–Thiol Ligands for Semihydrogenation of Alkynes. ACS Applied Materials & Interfaces, 2019, 11, 37708-37719.	4.0	33
122	Design of hydroxyapatite-bound transition metal catalysts for environmentally-benign organic syntheses. Catalysis Surveys From Asia, 2004, 8, 231-239.	1.0	32
123	Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H ₂ production. Nanoscale, 2016, 8, 7749-7754.	2.8	32
124	Synthesis of plasmonic gold nanoparticles supported on morphology-controlled TiO2 for aerobic alcohol oxidation. Catalysis Today, 2020, 352, 255-261.	2.2	32
125	Synthesis of a binary alloy nanoparticle catalyst with an immiscible combination of Rh and Cu assisted by hydrogen spillover on a TiO ₂ support. Chemical Science, 2020, 11, 4194-4203.	3.7	32
126	An Efficient Cu/BaO/La ₂ O ₃ Catalyst for the Simultaneous Removal of Carbon Soot and Nitrogen Oxides from Simulated Diesel Exhaust. Journal of Physical Chemistry C, 2014, 118, 9078-9085.	1.5	31

#	Article	IF	CITATIONS
127	Catalytic combustion of diesel soot over Fe and Ag-doped manganese oxides: role of heteroatoms in the catalytic performances. Catalysis Science and Technology, 2018, 8, 1905-1914.	2.1	31
128	Design of Pd–Graphene–Au Nanorod Nanocomposite Catalyst for Boosting Suzuki–Miyaura Coupling Reaction by Assistance of Surface Plasmon Resonance. Journal of Physical Chemistry C, 2019, 123, 24575-24583.	1.5	31
129	Incorporation of a Ru complex into an amine-functionalized metal–organic framework for enhanced activity in photocatalytic aerobic benzyl alcohol oxidation. Catalysis Science and Technology, 2019, 9, 1511-1517.	2.1	31
130	Design of Silver-Based Controlled Nanostructures for Plasmonic Catalysis under Visible Light Irradiation. Bulletin of the Chemical Society of Japan, 2019, 92, 19-29.	2.0	31
131	PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO ₂ to formate. Journal of Materials Chemistry A, 2020, 8, 4437-4446.	5.2	31
132	Oxidation of Benzyl Alcohol over Nanoporous Au–CeO ₂ Catalysts Prepared from Amorphous Alloys and Effect of Alloying Au with Amorphous Alloys. Industrial & Engineering Chemistry Research, 2018, 57, 5599-5605.	1.8	30
133	Twoâ€Phase System Utilizing Hydrophobic Metal–Organic Frameworks (MOFs) for Photocatalytic Synthesis of Hydrogen Peroxide. Angewandte Chemie, 2019, 131, 5456-5460.	1.6	30
134	Visible-light driven H2 production utilizing iridium and rhodium complexes intercalated into a zirconium phosphate layered matrix. Dalton Transactions, 2014, 43, 10541.	1.6	29
135	Visible-light-enhanced catalytic activity of Ru nanoparticles over carbon modified g-C3N4. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 327-333.	2.0	29
136	Manipulation of plasmon-induced hot electron transport in Pd/MoO3-x@ZIF-8: Boosting the activity of Pd-catalyzed nitroaromatic hydrogenation under visible-light irradiation. Applied Catalysis B: Environmental, 2021, 282, 119511.	10.8	29
137	In Situ Generation of Active Pd Nanoparticles within a Macroreticular Acidic Resin: Efficient Catalyst for the Direct Synthesis of Hydrogen Peroxide. Journal of Physical Chemistry Letters, 2010, 1, 1675-1678.	2.1	28
138	Nickel-supported carbon nitride photocatalyst combined with organic dye for visible-light-driven hydrogen evolution from water. Physical Chemistry Chemical Physics, 2015, 17, 24086-24091.	1.3	28
139	How the Morphology of NiO <i>_x</i> -Decorated CeO ₂ Nanostructures Affects Catalytic Properties in CO ₂ Methanation. Langmuir, 2021, 37, 5376-5384.	1.6	28
140	A Multifunctional Heterogeneous Catalyst: Titanium-containing Mesoporous Silica Material Encapsulating Magnetic Iron Oxide Nanoparticles. Chemistry Letters, 2007, 36, 1068-1069.	0.7	27
141	Interconversion of Formate/Bicarbonate for Hydrogen Storage/Release: Improved Activity Following Sacrificial Surface Modification of a Ag@Pd/TiO ₂ Catalyst with a TiO <i>_x</i> Shell. ACS Applied Energy Materials, 2020, 3, 5819-5829.	2.5	27
142	Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst. Journal of CO2 Utilization, 2021, 54, 101765.	3.3	27
143	Dual Role of Missing-Linker Defects Terminated by Acetate Ligands in a Zirconium-Based MOF in Promoting Photocatalytic Hydrogen Peroxide Production. Journal of Physical Chemistry C, 2021, 125, 27909-27918.	1.5	27
144	Fabrication of metal nanoparticles in metal organic framework NH2-MIL-125 by UV photo-assisted methods for optimized catalytic properties. Catalysis Today, 2014, 235, 98-102.	2.2	26

#	Article	IF	CITATIONS
145	Size Effect of Carbon-Supported Pd Nanoparticles in the Hydrogen Production from Formic Acid. Bulletin of the Chemical Society of Japan, 2015, 88, 1500-1502.	2.0	26
146	Visibleâ€Lightâ€Responsive Carbon Dioxide Reduction System: Rhenium Complex Intercalated into a Zirconium Phosphate Layered Matrix. ChemCatChem, 2015, 7, 3519-3525.	1.8	26
147	Simple Route for the Synthesis of Highly Active Bimetallic Nanoparticle Catalysts with Immiscible Ru and Ni Combination by utilizing a TiO ₂ Support. ChemCatChem, 2018, 10, 3526-3531.	1.8	26
148	Supported Pd and PdAu Nanoparticles on Ti-MCM-41 Prepared by a Photo-assisted Deposition Method as Efficient Catalysts for Direct Synthesis of H2O2 from H2 and O2. Catalysis Letters, 2009, 131, 337-343.	1.4	25
149	Pd–Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO ₂ to Formate. Journal of Physical Chemistry C, 2021, 125, 3961-3971.	1.5	25
150	Heterometallic and Hydrophobic Metal–Organic Frameworks as Durable Photocatalysts for Boosting Hydrogen Peroxide Production in a Two-Phase System. ACS Applied Energy Materials, 2021, 4, 4823-4830.	2.5	24
151	Preparation of Superhydrophilic Mesoporous Silica Thin Films Containing Single-site Photocatalyst (Ti, V, Cr, Mo, and W oxide moieties). Chemistry Letters, 2008, 37, 748-749.	0.7	23
152	An electroless deposition technique for the synthesis of highly active and nano-sized Pd particles on silica nanosphere. Catalysis Today, 2012, 185, 109-112.	2.2	23
153	Activity, Recyclability, and Stability of Lipases Immobilized on Oilâ€Filled Spherical Silica Nanoparticles with Different Silica Shell Structures. ChemCatChem, 2013, 5, 2527-2536.	1.8	23
154	Creation of Nickel-Based Active Species within a Macroreticular Acidic Resin: A Noble-Metal-Free Heterogeneous Catalyst for Visible-Light-Driven H ₂ Evolution from Water. ACS Catalysis, 2014, 4, 4129-4135.	5.5	23
155	Tailoring the Size and Shape of Colloidal Noble Metal Nanocrystals as a Valuable Tool in Catalysis. Catalysis Surveys From Asia, 2019, 23, 127-148.	1.0	23
156	Synthesize of nano-sized Pd metal catalyst on Ti-containing zeolite using a photo-assisted deposition (PAD) method. Catalysis Letters, 2007, 114, 75-78.	1.4	22
157	Preparation of hydrophobically modified single-site Ti-containing mesoporous silica (TiSBA-15) and their enhanced catalytic performances. Catalysis Today, 2011, 175, 393-397.	2.2	22
158	Elaboration, characterization and properties of silica-based single-site heterogeneous photocatalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2113-2128.	1.0	22
159	Enhancement of Catalytic Activity Over AuPd Nanoparticles Loaded Metal Organic Framework Under Visible Light Irradiation. Topics in Catalysis, 2016, 59, 1765-1771.	1.3	22
160	Interfacial Engineering of PdAg/TiO ₂ with a Metal–Organic Framework to Promote the Hydrogenation of CO ₂ to Formic Acid. Journal of Physical Chemistry C, 2020, 124, 11499-11505.	1.5	22
161	Additive-Free Aqueous Phase Synthesis of Formic Acid by Direct CO2 Hydrogenation over a PdAg Catalyst on a Hydrophilic N-Doped Polymer–Silica Composite Support with High CO2 Affinity. ACS Applied Energy Materials, 2020, 3, 5847-5855.	2.5	22
162	Plasmonic nanocatalysts for visible-NIR light induced hydrogen generation from storage materials. Materials Advances, 2021, 2, 880-906.	2.6	22

#	Article	IF	CITATIONS
163	Investigation of local structures and photo-induced surface properties on transparent Me(Ti,Cr)-containing mesoporous silica thin films. Microporous and Mesoporous Materials, 2007, 101, 288-295.	2.2	21
164	Low-temperature synthesis of highly hydrophilic Ti-containing mesoporous silica thin films on polymer substrates by photocatalytic removal of structure-directing agents. Journal of Materials Chemistry, 2011, 21, 236-241.	6.7	21
165	Ultraâ€Low Loading of Ru Clusters over Graphitic Carbon Nitride: A Drastic Enhancement in Photocatalytic Hydrogen Evolution Activity. ChemCatChem, 2019, 11, 1963-1969.	1.8	21
166	Design and application of photocatalysts using porous materials. Catalysis Reviews - Science and Engineering, 2021, 63, 165-233.	5.7	21
167	Defect Engineering of Pt/TiO _{2–<i>x</i>} Photocatalysts via Reduction Treatment Assisted by Hydrogen Spillover. ACS Applied Materials & Interfaces, 2021, 13, 48669-48678.	4.0	21
168	Synthesis of Pd nanoparticles on heteropolyacid-supported silica by a photo-assisted deposition method: an active catalyst for the direct synthesis of hydrogen peroxide. RSC Advances, 2012, 2, 1047-1054.	1.7	20
169	Environmental Transmission Electron Microscopy Study of Diesel Carbon Soot Combustion under Simulated Catalyticâ€Reaction Conditions. ChemPhysChem, 2015, 16, 1347-1351.	1.0	20
170	Shape Effect of MnO <i>x</i> -Decorated CeO2 Catalyst in Diesel Soot Oxidation. Bulletin of the Chemical Society of Japan, 2017, 90, 556-564.	2.0	20
171	Synthesis of Nano-Sized Platinum Metal Particles on Ti-Containing Mesoporous Silica Using Microwave-Assisted Deposition Method. Topics in Catalysis, 2010, 53, 218-223.	1.3	19
172	Iridium and Rhodium Complexes within a Macroreticular Acidic Resin: A Heterogeneous Photocatalyst for Visibleâ€light Driven H ₂ Production without an Electron Mediator. Chemistry - an Asian Journal, 2013, 8, 3207-3213.	1.7	19
173	Luminescent Single-Atom Eu-Coordinated Graphitic Carbon Nitride Nanosheets for Selective Sensing of Acetone and Cyclohexane. ACS Applied Nano Materials, 2020, 3, 10209-10217.	2.4	19
174	Photocatalytically-driven H2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes. Catalysis Today, 2021, 364, 182-189.	2.2	19
175	An efficient method for the creation of a superhydrophobic surface: ethylene polymerization over self-assembled colloidal silica nanoparticles incorporating single-site Cr-oxide catalysts. Journal of Materials Chemistry, 2011, 21, 8543.	6.7	18
176	A new application of photocatalysts: synthesis of nano-sized metal and alloy catalysts by a photo-assisted deposition method. Photochemical and Photobiological Sciences, 2009, 8, 652-656.	1.6	17
177	Controlled Synthesis and Surface Hydrophilic Properties of Ti-Containing Mesoporous Silica Thin Films Using Various Structure-Directing Agents. Journal of Physical Chemistry C, 2011, 115, 15410-15415.	1.5	17
178	Control of physicochemical properties and catalytic activity of tris(2,2′-bipyridine)iron(<scp>ii</scp>) encapsulated within the zeolite Y cavity by alkaline earth metal cations. Dalton Transactions, 2014, 43, 1132-1138.	1.6	17
179	Photocatalytic Approaches for Hydrogen Production via Formic Acid Decomposition. Topics in Current Chemistry, 2019, 377, 27.	3.0	17
180	Catalysis of nanosized Pd metal catalyst deposited on Ti-containing zeolite by a photo-assisted deposition (PAD) method. Pure and Applied Chemistry, 2007, 79, 2095-2100.	0.9	16

#	Article	IF	CITATIONS
181	Application of Microwave-Assisted Deposition for the Synthesis of Noble Metal Particles on Ti-Containing Mesoporous Silica. Catalysis Letters, 2009, 129, 404-407.	1.4	16
182	Mesoporous silica supported Pd/Ag bimetallic nanoparticles as a plasmonic catalyst for chemoselective hydrogenation of p-nitrostyrene under visible light irradiation. Journal of Chemical Sciences, 2017, 129, 1661-1669.	0.7	16
183	Crystal Facet Engineering and Hydrogen Spillover-Assisted Synthesis of Defective Pt/TiO _{2–<i>x</i>} Nanorods with Enhanced Visible Light-Driven Photocatalytic Activity. ACS Applied Materials & Interfaces, 2022, 14, 2291-2300.	4.0	16
184	Surface hydrophilic–hydrophobic property on transparent mesoporous silica thin films containing chromium oxide single-site photocatalyst. Catalysis Today, 2008, 132, 146-152.	2.2	15
185	Fabrication of Hydrophobic Zeolites Using Triethoxyfluorosilane and their Application for Photocatalytic Degradation of Acetaldehyde. Topics in Catalysis, 2009, 52, 643-648.	1.3	15
186	Design of superhydrophobic surfaces by synthesis of carbon nanotubes over Co–Mo nanocatalysts deposited under microwave irradiation on Ti-containing mesoporous silica thin films. Physical Chemistry Chemical Physics, 2011, 13, 6309.	1.3	15
187	ã,³ãƒã,╋ƒ‰çжãŠã,^ã³æ‹æŒãƒŠãƒŽç²'åã®è¨è¨ˆâ"€ãã®å•̂æ~¥¼Œæ§‹é€è§£æžãë触媒作用─. Journal of th	ie Jap an Pe	etr us eum Insti
188	What Are the Active Species in the Photoinduced H ₂ Production with Terpyridyl Pt(II) Complexes? An Investigation by in Situ XAFS. ChemPhysChem, 2013, 14, 1122-1125.	1.0	15
189	Skeletal Ni Catalysts Prepared from Amorphous Ni–Zr Alloys: Enhanced Catalytic Performance for Hydrogen Generation from Ammonia Borane. ChemPhysChem, 2016, 17, 412-417.	1.0	15
190	Properties, fabrication and applications of plasmonic semiconductor nanocrystals. Catalysis Science and Technology, 2020, 10, 4141-4163.	2.1	15
191	Recent Applications of Amorphous Alloys to Design Skeletal Catalysts. Bulletin of the Chemical Society of Japan, 2020, 93, 438-454.	2.0	15
192	Preparation of highly active platinum nanoparticles on ZSM-5 zeolite including cerium and titanium dioxides as photo-assisted deposition sites. Catalysis Today, 2010, 153, 189-192.	2.2	14
193	Black Phosphorusâ€Based Compound with Few Layers for Photocatalytic Water Oxidation. ChemCatChem, 2018, 10, 3424-3428.	1.8	14
194	Visible-light-driven reduction of nitrostyrene utilizing plasmonic silver nanoparticle catalysts immobilized on oxide supports. Catalysis Today, 2020, 355, 620-626.	2.2	14
195	Design of superhydrophilic surfaces on metallic substrates by the fabrication of Ti-containing mesoporous silica thin film. Applied Catalysis A: General, 2010, 387, 95-99.	2.2	13
196	Unexpected Pd-catalyzed hydrogenation of phenol to 2-cyclohexene-1-one: enhanced activity and selectivity assisted by molecular oxygen. Chemical Communications, 2012, 48, 8886.	2.2	13
197	Positive effects of the residual templates within the MCM-41 mesoporous silica channels in the metal-catalyzed reactions. Chemical Communications, 2013, 49, 10468.	2.2	13
198	Enhanced ammonia-borane decomposition by synergistic catalysis using CoPd nanoparticles supported on titano-silicates. RSC Advances, 2016, 6, 91768-91772.	1.7	13

#	Article	IF	CITATIONS
199	Improvement of the water oxidation performance of Ti, F co-modified hematite by surface modification with a Co(salen) molecular cocatalyst. Journal of Materials Chemistry A, 2020, 8, 21613-21622.	5.2	13
200	Photoreduction of Carbon Dioxide to Formic Acid with Fe-Based MOFs: The Promotional Effects of Heteroatom Doping and Alloy Nanoparticle Confinement. ACS Applied Energy Materials, 2021, 4, 11634-11642.	2.5	13
201	New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications. EnergyChem, 2022, 4, 100070.	10.1	13
202	Uniform anatase single-crystal cubes with high thermal stability fully enclosed by active {010} and {001} facets. RSC Advances, 2015, 5, 11029-11035.	1.7	12
203	Active skeletal Ni catalysts prepared from Ni–Zr amorphous alloys by oxygen treatment. Applied Catalysis A: General, 2015, 504, 559-564.	2.2	12
204	Skeletal Au prepared from Au–Zr amorphous alloys with controlled atomic compositions and arrangement for active oxidation of benzyl alcohol. Journal of Materials Chemistry A, 2016, 4, 8458-8465.	5.2	12
205	Self-assembled core–shell nanocomposite catalysts consisting of single-site Co-coordinated g-C3N4 and Au nanorods for plasmon-enhanced CO2 reduction. Journal of CO2 Utilization, 2021, 52, 101691.	3.3	12
206	Photo-induced Surface Property on Transparent Mesoporous Silica Thin Films Containing Single-site Photocatalyst. Topics in Catalysis, 2008, 47, 116-121.	1.3	11
207	Synthesis and Characterization of Ir and Rh Complexes Supported on Layered K4Nb6O17 as a Heterogeneous Photocatalyst for Visible-Light-Induced Hydrogen Evolution. Bulletin of the Chemical Society of Japan, 2014, 87, 874-881.	2.0	11
208	Pyreneâ€Thiolâ€modified Pd Nanoparticles on Carbon Support: Kinetic Control by Steric Hinderance and Improved Stability by the Catalystâ€Support Interaction. ChemCatChem, 2020, 12, 5880-5887.	1.8	11
209	Promotional effect of surface plasmon resonance on direct formation of hydrogen peroxide from H2 and O2 over Pd/Graphene-Au nanorod catalytic system. Journal of Catalysis, 2021, 394, 259-265.	3.1	11
210	Synthesis of Highly Dispersed Platinum Nanoparticles on Ti-Containing Mesoporous Silica Using Photo-Assisted Deposition. Journal of Nanoscience and Nanotechnology, 2009, 9, 557-561.	0.9	10
211	Size-controlled deposition of Ag nanoparticles on alumina with the assistance of a photo-induced chromic reaction, and study of their catalytic properties. Physical Chemistry Chemical Physics, 2011, 13, 15821.	1.3	10
212	Ruthenium(II)â^'Bipyridine/NanoC ₃ N ₄ Hybrids: Tunable Photochemical Properties by Using Exchangeable Alkali Metal Cations. Chemistry - an Asian Journal, 2018, 13, 1348-1356.	1.7	10
213	RuPd Alloy Nanoparticles Supported on Plasmonic H x MoO3-y for Efficient Photocatalytic Reduction of p -Nitrophenol. European Journal of Inorganic Chemistry, 2019, 2019, 3745-3752.	1.0	10
214	Diesel Soot Combustion over Mn 2 O 3 Catalysts with Different Morphologies: Elucidating the Role of Active Oxygen Species in Soot Combustion. Chemistry - an Asian Journal, 2020, 15, 2005-2014.	1.7	10
215	Enhanced Catalysis of Plasmonic Silver Nanoparticles by a Combination of Macro-/Mesoporous Nanostructured Silica Support. Journal of Physical Chemistry C, 2021, 125, 9150-9157.	1.5	10
216	Morphology-controlled Pd nanocrystals as catalysts in tandem dehydrogenation-hydrogenation reactions. Journal of Chemical Sciences, 2017, 129, 1695-1703.	0.7	10

#	Article	IF	CITATIONS
217	Effects of Carbon Support Nanostructures on the Reactivity of a Ru Nanoparticle Catalyst in a Hydrogen Transfer Reaction. Organic Process Research and Development, 2018, 22, 1580-1585.	1.3	9
218	Modification of Tiâ€doped Hematite Photoanode with Quasiâ€molecular Cocatalyst: A Comparison of Improvement Mechanism Between Nonâ€noble and Noble Metals. ChemSusChem, 2021, 14, 2180-2187.	3.6	9
219	Synthesis of Pd-supported Nanosized Mesoporous Silica as a Spherical Nanocatalyst for Suzuki–Miyaura Coupling Reaction. Chemistry Letters, 2011, 40, 609-611.	0.7	8
220	Specific Enhancement of Activity of Carbon-supported Single-site Co Catalyst in the Microwave-assisted Solvent-free Aerobic Oxidation. Chemistry Letters, 2017, 46, 789-791.	0.7	8
221	Non-noble metal doped perovskite as a promising catalyst for ammonia borane dehydrogenation. Catalysis Today, 2020, 351, 6-11.	2.2	8
222	Tunable surface modification of a hematite photoanode by a Co(salen)-based cocatalyst for boosting photoelectrochemical performance. Catalysis Science and Technology, 2020, 10, 1714-1723.	2.1	8
223	Synthesis of small Ni-core–Au-shell catalytic nanoparticles on TiO ₂ by galvanic replacement reaction. Nanoscale Advances, 2021, 3, 823-835.	2.2	8
224	Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate. Nano Research, 2023, 16, 4515-4523.	5.8	8
225	Experimental and computational study on roles of WOx promoting strong metal support promoter interaction in Pt catalysts during glycerol hydrogenolysis. Scientific Reports, 2021, 11, 530.	1.6	8
226	Preparation of Size-controlled Copper-nanoparticle-supported Catalyst Using Rapid and Uniform Heating under Microwave Irradiation. Chemistry Letters, 2012, 41, 614-616.	0.7	7
227	Hydrogenation of 1-octene over skeletal Pd catalysts prepared from Pd–Zr amorphous alloys and the effect of Ni addition. Catalysis Today, 2016, 265, 138-143.	2.2	7
228	Design of Advanced Functional Materials Using Nanoporous Singleâ€ 6 ite Photocatalysts. Chemical Record, 2020, 20, 660-671.	2.9	7
229	Catalytic and photocatalytic epoxidation over microporous titanosilicates with nanosheet or layered structure. Catalysis Today, 2021, 376, 28-35.	2.2	7
230	Hybrid Phase MoS ₂ as a Noble Metal-Free Photocatalyst for Conversion of Nitroaromatics to Aminoaromatics. Journal of Physical Chemistry C, 2021, 125, 20887-20895.	1.5	7
231	Synthesis and photocatalytic activity of TiO2 nanoparticles fluorine-modified with TiF4. Research on Chemical Intermediates, 2008, 34, 331-337.	1.3	6
232	Simple Design of Hydrophobic Zeolite Material by Modification Using TEFS and its Application as a Support of TiO2 Photocatalyst. Topics in Catalysis, 2009, 52, 193-196.	1.3	6
233	Preparation of W-Containing Mesoporous Silica Thin Films and Their Surface Hydrophilic Properties. E-Journal of Surface Science and Nanotechnology, 2009, 7, 141-144.	0.1	6
234	Design of Nano-Sized Pt Metals Synthesized on Ti-Containing Mesoporous Silicas and Efficient Catalytic Application for NO Reduction. Materials Transactions, 2008, 49, 398-401.	0.4	5

#	Article	IF	CITATIONS
235	Synthesis, Characterization, and Catalytic Properties of Hollow γ-Fe2O3 Spheres toward Liquid-Phase Oxidation Using Hydrogen Peroxide. Bulletin of the Chemical Society of Japan, 2010, 83, 1122-1126.	2.0	5
236	Pt-supported Spherical Mesoporous Silica as a Nanosized Catalyst for Efficient Liquid-Phase Hydrogenation. Topics in Catalysis, 2014, 57, 1026-1031.	1.3	5
237	Photoluminescence properties of Ag2S semiconductor clusters synthesized in micropores and mesopores. Research on Chemical Intermediates, 2008, 34, 519-524.	1.3	4
238	Effects of preparation conditions on the synthesis of nano-sized Ag metal particles by the wet-process using 3-mercapto-propionic acid. Research on Chemical Intermediates, 2008, 34, 641-647.	1.3	4
239	Preparation of nano-sized Pt metal particles by photo-assisted deposition (PAD) on transparent Ti-containing mesoporous silica thin film. Research on Chemical Intermediates, 2008, 34, 495-505.	1.3	4
240	New Method for the Synthesis of Ru Nanoparticles Using Photoexcited Fullerene C60-containing Mesoporous Silica as a Catalyst Support. Chemistry Letters, 2015, 44, 1691-1693.	0.7	4
241	Photocatalytic Approaches for Hydrogen Production via Formic Acid Decomposition. Topics in Current Chemistry Collections, 2020, , 193-223.	0.2	4
242	Coating of Transparent Ti-containing Mesoporous Silica Thin Films on Quartz and Aluminum Alloy Substrates for Fabrication of Highly Hydrophilic Surfaces. ISIJ International, 2010, 50, 255-258.	0.6	3
243	Design and Functionalization of Photocatalytic Systems within Mesoporous Silica. ChemSusChem, 2014, 7, 1495-1495.	3.6	3
244	Single-Site Heterogeneous Catalysts and Photocatalysts for Emerging Applications. ACS Symposium Series, 2020, , 151-188.	0.5	3
245	Mesoporous silica–supported Ag-based plasmonic photocatalysts. , 2020, , 353-368.		3
246	PdAg Nanoparticles Supported on an Amine-functionalized MOF as a Photo-switchable Catalyst for Hydrogen Storage/Delivery Mediated by CO2/Formic Acid. Chemistry Letters, 2021, 50, 607-610.	0.7	3
247	Effect of metal deposition on the photocatalytic activity of titania-silica for the removal of 2-propanol diluted in water. Research on Chemical Intermediates, 2009, 35, 305-312.	1.3	2
248	Semiconductorâ€based Photoanodes Modified with Metalâ€Organic Frameworks and Molecular Catalysts as Cocatalysts for Enhanced Photoelectrochemical Water Oxidation Reaction. ChemCatChem, 2021, 13, 5058-5072.	1.8	2
249	Size effects in plasmonic gold nanorod based Pd-rGO hybrid catalyst for promoting visible-light-driven Suzuki-Miyaura coupling reaction. Catalysis Today, 2022, , .	2.2	2
250	XAFS Study on Nano-Sized Pd Metal Catalyst Deposited on Ti-Containing Zeolite by a Photo-Assisted Deposition (PAD) Method. AIP Conference Proceedings, 2007, , .	0.3	1
251	Degradation of organic compounds on TiO2 photocatalysts prepared by a hydrothermal method in the presence of NH4F. Research on Chemical Intermediates, 2009, 35, 299-304.	1.3	1
252	Tetragonal Distortion in Thermochromic Copper(II) Diamine Complex Induced by the Fixation on Silica Surfaces and Their Catalytic Investigations. Topics in Catalysis, 2009, 52, 586-591.	1.3	1

#	Article	IF	CITATIONS
253	Direct Synthesis of Water-Dispersible FePt Nanoparticles Capped with L-Cysteine. Journal of Nanoscience and Nanotechnology, 2010, 10, 222-226.	0.9	1
254	Hydrogenation of Phenol Using Silica-Supported Pd and PdAu Catalysts in the Presence of H2 and O2. Bulletin of the Chemical Society of Japan, 2012, 85, 1057-1059.	2.0	1
255	Environmental Transmission Electron Microscopy Study of Diesel Carbon Soot Combustion under Simulated Catalyticâ€Reaction Conditions. ChemPhysChem, 2015, 16, 1321-1321.	1.0	1
256	Silica-Supported Metal Complex Photocatalysts. Nanostructure Science and Technology, 2016, , 465-477.	0.1	1
257	Photocatalytic Hydrogen Production from Water using Organic-Inorganic Hybrid Nanoparticles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2012, 20, 16-21.	0.0	0
258	Synthesis of a Fe-Ni Alloy on a Ceria Support as a Noble-Metal-Free Catalyst for Hydrogen Production from Chemical Hydrogen Storage Materials. ChemCatChem, 2015, 7, 1235-1235.	1.8	0
259	Design of Plasmonic Catalysts Utilizing Nanostructures. Journal of the Japan Petroleum Institute, 2021, 64, 155-165.	0.4	0
260	Supported Core–Shell Alloy Nanoparticle Catalysts for the Carbon Dioxide Hydrogenation to Formic Acid. Nanostructure Science and Technology, 2021, , 151-163.	0.1	0
261	Hollow Carbon Spheres Encapsulating Metal Nanoparticles for CO2 Hydrogenation Reactions. Nanostructure Science and Technology, 2021, , 425-440.	0.1	0
262	Metal Catalysts for Storage and Delivery of Hydrogen Energy. Materia Japan, 2017, 56, 653-659.	0.1	0
263	Chemical Hydrogen Storage and Release Driven by PdAg Alloy Nanoparticle Catalysts. Materia Japan, 2020, 59, 361-365.	0.1	0
264	Geometrical Determination of Surface Atom Diffusion Paths. Materials Transactions, 2022, , .	0.4	0