
Alexander Mironov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensing Small Molecules by Nascent RNA. Cell, 2002, 111, 747-756.	28.9	624
2	H ₂ S: A Universal Defense Against Antibiotics in Bacteria. Science, 2011, 334, 986-990.	12.6	614
3	The riboswitch control of bacterial metabolism. Trends in Biochemical Sciences, 2004, 29, 11-17.	7.5	505
4	Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation. Science, 2010, 328, 504-508.	12.6	475
5	The riboswitch-mediated control of sulfur metabolism in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5052-5056.	7.1	229
6	UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature, 2014, 505, 372-377.	27.8	210
7	Riboswitch control of Rho-dependent transcription termination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5376-5381.	7.1	182
8	Bacterial Nitric Oxide Extends the Lifespan of C.Âelegans. Cell, 2013, 152, 818-830.	28.9	163
9	Mechanism of H ₂ S-mediated protection against oxidative stress in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6022-6027.	7.1	156
10	Inhibitors of bacterial H ₂ S biogenesis targeting antibiotic resistance and tolerance. Science, 2021, 372, 1169-1175.	12.6	112
11	ppGpp couples transcription to DNA repair in <i>E. coli</i> . Science, 2016, 352, 993-996.	12.6	109
12	Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nature Communications, 2017, 8, 15868.	12.8	99
13	Pre-termination Transcription Complex: Structure and Function. Molecular Cell, 2021, 81, 281-292.e8.	9.7	62
14	Single amino acid substitutions in the cAMP receptor protein specifically abolish regulation by the CytR repressor in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4921-4925.	7.1	44
15	Atomic structure at 2.5 Ã resolution of uridine phosphorylase fromE. colias refined in the monoclinic crystal lattice. FEBS Letters, 1995, 367, 183-187.	2.8	44
16	Dietary thiols accelerate aging of C. elegans. Nature Communications, 2021, 12, 4336.	12.8	44
17	Riboswitches in regulation of Rho-dependent transcription termination. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 974-977.	1.9	29
18	Analysis of CRP-CytR interactions at the Escherichia coli udp promoter. Journal of Bacteriology, 1996, 178, 1614-1622.	2.2	27

#	Article	IF	CITATIONS
19	Comparison of the structure and regulation of the udp gene of Vibrio cholerae, Yersinia pseudotuberculosis, Salmonella typhimurium, and Escherichia coli. Research in Microbiology, 2003, 154, 510-520.	2.1	27
20	Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4â€dependent DNA repair genes. FEBS Letters, 2013, 587, 3108-3114.	2.8	26
21	CydDC functions as a cytoplasmic cystine reductase to sensitize <i>Escherichia coli</i> to oxidative stress and aminoglycosides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23565-23570.	7.1	19
22	Preliminary investigation of the three-dimensional structure ofSalmonella typhimuriumuridine phosphorylase in the crystalline state. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 337-340.	0.7	18
23	Construction of a butyrate-producing E. coli strain without the use of heterologous genes. Applied Biochemistry and Microbiology, 2010, 46, 745-754.	0.9	15
24	Involvement of alkylhydroxybenzenes, microbial autoregulators, in controlling the expression of stress regulons. Microbiology, 2009, 78, 678-688.	1.2	14
25	Dissection of a surface-exposed portion of the cAMP-CRP complex that mediates transcription activation and repression. Molecular Microbiology, 1999, 32, 497-504.	2.5	12
26	Structural and Functional Analysis of the Promoter Region of the Escherichia coli udp Gene. Russian Journal of Genetics, 2004, 40, 10-19.	0.6	12
27	The characterization of internal promoters in the Bacillus subtilis riboflavin biosynthesis operon. Russian Journal of Genetics, 2012, 48, 967-974.	0.6	12
28	Purification, crystallization and preliminary X-ray analysis of uridine phosphorylase fromSalmonella typhimurium. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 709-711.	2.5	11
29	Transcriptional Approaches to Riboswitch Studies. Methods in Molecular Biology, 2009, 540, 39-51.	0.9	7
30	X-ray structure ofSalmonella typhimuriumuridine phosphorylase complexed with 5-fluorouracil and molecular modelling of the complex of 5-fluorouracil with uridine phosphorylase fromVibrio cholerae. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 968-974.	2.5	7
31	Expression, purification, crystallization and preliminary X-ray structure analysis ofVibrio choleraeuridine phosphorylase in complex with thymidine. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1394-1397.	0.7	6
32	selective modification of putative uridine-binding site of uridine phosphorylase from E. coli with fluorescein 5′-isothiocyanate. BBA - Proteins and Proteomics, 1994, 1205, 54-58.	2.1	5
33	Relationship between the secondary structure and the regulatory activity of the leader region of the riboflavin biosynthesis operon in Bacillus subtilis. Russian Journal of Genetics, 2008, 44, 399.	0.6	5
34	Gene yddG of Escherichia coli encoding the putative exporter of aromatic amino acids: Constitutive transcription and dependence of the expression on the cell growth rate. Russian Journal of Genetics, 2009, 45, 525-532.	0.6	4
35	X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases. Crystallography Reports, 2016, 61, 954-973.	0.6	4
36	Investigation of the Regulation Mechanism of theribCGene Activity in Bacillus subtilis. Russian Journal of Genetics, 2001, 37, 1090-1093.	0.6	3

#	Article	IF	CITATIONS
37	Involvement of Sigma S and Sigma 70 Subunits of RNA Polymerase and the CRP Protein in the Regulation of Microcin C51 Operon Expression. Russian Journal of Genetics, 2004, 40, 1199-1209.	0.6	3
38	Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling. Crystallography Reports, 2016, 61, 830-841.	0.6	3
39	Title is missing!. Russian Journal of Genetics, 2003, 39, 256-264.	0.6	2
40	Quantitative high-performance thin-layer chromatography of nucleosides. Russian Journal of Applied Chemistry, 2010, 83, 869-873.	0.5	2
41	Mutational analysis of the ribC gene of Bacillus subtilis. Russian Journal of Genetics, 2011, 47, 757-761.	0.6	2
42	Mutation analysis of the purine operon leader region in Bacillus subtilis. Russian Journal of Genetics, 2011, 47, 785-793.	0.6	2
43	Isolation and phenotypic characteristics of the Escherichia coli butanol-tolerant mutants. Microbiology, 2012, 81, 208-215.	1.2	2
44	Analysis of natural nucleosides and their derivatives by thin-layer chromatography. Applied Biochemistry and Microbiology, 2016, 52, 714-721.	0.9	2
45	Structural and Functional Analysis of Pyrimidine Nucleoside Phosphorylases of the NP-I and NP-II Families in Complexes with 6-Methyluracil. Crystallography Reports, 2018, 63, 418-427.	0.6	2
46	Influence of the rho-15 temperature-sensitive (ts) mutation on the expression of the deoâ^'operon in Escherichia coli. Molecular Genetics and Genomics, 1982, 187, 157-161.	2.4	1
47	Mutations altering the specificity of the sensor RNA encoded by the Bacillus subtilis pbuE gene. Russian Journal of Genetics, 2007, 43, 712-716.	0.6	1
48	Multifunctional regulatory mutation in Bacillus subtilis flavinogenesis system. Russian Journal of Genetics, 2009, 45, 1256-1259.	0.6	1
49	Lux biosensors for antibiotic detection: The contribution from reactive oxygen species to the bactericidal activity of antibiotics. Russian Journal of Physical Chemistry B, 2015, 9, 454-460.	1.3	1
50	Title is missing!. Russian Journal of Genetics, 2002, 38, 501-509.	0.6	0
51	Study of the Mechanism for Regulating ribR Gene Activity in Bacillus subtilis. Russian Journal of Genetics, 2004, 40, 580-583.	0.6	0
52	Regulation of bacterial transcription elongation. Molecular Biology, 2011, 45, 355-374.	1.3	0