
Holly Anderton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skinâ€draining lymph nodes. Immunology and Cell Biology, 2022, , .	2.3	3
2	Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity, 2022, 55, 423-441.e9.	14.3	61
3	Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. IScience, 2022, 25, 104632.	4.1	3
4	Langerhans cells are an essential cellular intermediary in chronic dermatitis. Cell Reports, 2022, 39, 110922.	6.4	5
5	EHF is essential for epidermal and colonic epithelial homeostasis, and suppresses <i>Apc</i> -initiated colonic tumorigenesis. Development (Cambridge), 2021, 148, .	2.5	8
6	Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature, 2020, 577, 103-108.	27.8	198
7	A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nature Communications, 2020, 11, 3150.	12.8	75
8	Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nature Reviews Rheumatology, 2020, 16, 496-513.	8.0	74
9	506 Langerhans cells drive TNF induced chronic proliferative dermatitis in SHARPIN deficient mice. Journal of Investigative Dermatology, 2019, 139, S87.	0.7	0
10	Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nature Communications, 2019, 10, 5291.	12.8	37
11	RIPK1 prevents TRADD-driven, but TNFR1 independent, apoptosis during development. Cell Death and Differentiation, 2019, 26, 877-889.	11.2	46
12	RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Molecular Cell, 2019, 73, 413-428.e7.	9.7	50
13	Inhibitor of Apoptosis Proteins (IAPs) Limit RIPK1-Mediated Skin Inflammation. Journal of Investigative Dermatology, 2017, 137, 2371-2379.	0.7	32
14	RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nature Communications, 2015, 6, 6282.	12.8	514
15	Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell, 2015, 162, 1365-1378.	28.9	121
16	TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. ELife, 2015, 4, .	6.0	75
17	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	6.0	232
18	cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent	1.4	145

manner. Blood, 2014, 123, 2562-2572.

HOLLY ANDERTON

#	Article	IF	CITATIONS
19	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	28.9	492
20	IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO Journal, 2012, 31, 1679-1691.	7.8	180
21	Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity, 2012, 36, 215-227.	14.3	430
22	Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood, 2011, 117, 4041-4051.	1.4	92
23	Cyclicâ€AMPâ€dependent protein kinase A regulates apoptosis by stabilizing the BH3â€only protein Bim. EMBO Reports, 2011, 12, 77-83.	4.5	52
24	Linear ubiquitination prevents inflammation and regulates immune signalling. Nature, 2011, 471, 591-596.	27.8	805
25	In TNF-stimulated Cells, RIPK1 Promotes Cell Survival by Stabilizing TRAF2 and cIAP1, which Limits Induction of Non-canonical NF-κB and Activation of Caspase-8. Journal of Biological Chemistry, 2011, 286, 13282-13291.	3.4	81
26	RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death and Differentiation, 2010, 17, 482-487.	11.2	162
27	Tumor Necrosis Factor (TNF) Signaling, but Not TWEAK (TNF-like Weak Inducer of Apoptosis)-triggered cIAP1 (Cellular Inhibitor of Apoptosis Protein 1) Degradation, Requires cIAP1 RING Dimerization and E2 Binding. Journal of Biological Chemistry, 2010, 285, 17525-17536.	3.4	37
28	TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 35906-35915.	3.4	202
29	CARP2 deficiency does not alter induction of NF-Î⁰B by TNFα. Current Biology, 2009, 19, R15-R17.	3.9	12