
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abcc6 Null Mice—a Model for Mineralization Disorder PXE Shows Vertebral Osteopenia Without Enhanced Intervertebral Disc Calcification With Aging. Frontiers in Cell and Developmental Biology, 2022, 10, 823249.	3.7	8
2	Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biology, 2021, 100-101, 207-220.	3.6	29
3	Understanding embryonic development for cellâ€based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Developmental Dynamics, 2021, 250, 302-317.	1.8	24
4	Hypoxia and Hypoxia-Inducible Factor-1α Regulate Endoplasmic Reticulum Stress in Nucleus Pulposus Cells. American Journal of Pathology, 2021, 191, 487-502.	3.8	20
5	The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nature Reviews Rheumatology, 2021, 17, 426-439.	8.0	43
6	Development of a standardized histopathology scoring system using machine learning algorithms for intervertebral disc degeneration in the mouse model—An <scp>ORS</scp> spine section initiative. JOR Spine, 2021, 4, e1164.	3.2	27
7	Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nature Communications, 2021, 12, 5213.	12.8	148
8	Lactate Efflux From Intervertebral Disc Cells Is Required for Maintenance of Spine Health. Journal of Bone and Mineral Research, 2020, 35, 550-570.	2.8	46
9	TonEBP-deficiency accelerates intervertebral disc degeneration underscored by matrix remodeling, cytoskeletal rearrangements, and changes in proinflammatory gene expression. Matrix Biology, 2020, 87, 94-111.	3.6	47
10	Differential Effect of Longâ€Term Systemic Exposure of TNFα on Health of the Annulus Fibrosus and Nucleus Pulposus of the Intervertebral Disc. Journal of Bone and Mineral Research, 2020, 35, 725-737.	2.8	29
11	Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biology, 2020, 94, 110-133.	3.6	66
12	Alterations in ECM signature underscore multiple sub-phenotypes of intervertebral disc degeneration. Matrix Biology Plus, 2020, 6-7, 100036.	3.5	21
13	Hypoxic Regulation of Mitochondrial Metabolism and Mitophagy in Nucleus Pulposus Cells Is Dependent on <scp>HIF</scp> â€1α– <scp>BNIP3</scp> Axis. Journal of Bone and Mineral Research, 2020, 35, 1504-1524.	2.8	71
14	Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell, 2020, 19, e13148.	6.7	35
15	Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation. JCI Insight, 2020, 5, .	5.0	23
16	RNA binding protein HuR regulates extracellular matrix gene expression and pH homeostasis independent of controlling HIF-1α signaling in nucleus pulposus cells. Matrix Biology, 2019, 77, 23-40.	3.6	32
17	NFAT5/TonEBP controls early acquisition of notochord phenotypic markers, collagen composition, and sonic hedgehog signaling during mouseÂintervertebral disc embryogenesis. Developmental Biology, 2019, 455, 369-381.	2.0	15
18	Nucleus pulposus primary cilia alter their length in response to changes in extracellular osmolarity but do not control TonEBP-mediated osmoregulation. Scientific Reports, 2019, 9, 15469.	3.3	6

#	Article	IF	CITATIONS
19	Transgenic mice overexpressing human TNF-Î \pm experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death and Disease, 2019, 10, 7.	6.3	67
20	A New Understanding of the Role of IL-1 in Age-Related Intervertebral Disc Degeneration in a Murine Model. Journal of Bone and Mineral Research, 2019, 34, 1531-1542.	2.8	46
21	p16Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biology, 2019, 82, 54-70.	3.6	68
22	Discogenic Back Pain: Literature Review of Definition, Diagnosis, and Treatment. JBMR Plus, 2019, 3, e10180.	2.7	114
23	Glycosaminoglycan synthesis in the nucleus pulposus: Dysregulation and the pathogenesis of disc degeneration. Matrix Biology, 2018, 71-72, 368-379.	3.6	91
24	A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis. Matrix Biology, 2018, 70, 102-122.	3.6	94
25	Expression of Carbonic Anhydrase III, a Nucleus Pulposus Phenotypic Marker, is Hypoxia-responsive and Confers Protection from Oxidative Stress-induced Cell Death. Scientific Reports, 2018, 8, 4856.	3.3	35
26	Bicarbonate Recycling by HIF-1–Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells. Journal of Bone and Mineral Research, 2018, 33, 338-355.	2.8	46
27	New horizons in spine research: Disc biology, tissue engineering, biomechanics, translational, and clinical research. JOR Spine, 2018, 1, e1032.	3.2	8
28	Challenges in Cell-Based Therapies for Intervertebral Disc Regeneration. , 2018, , 149-180.		0
29	COX-2 expression mediated by calcium-TonEBP signaling axis under hyperosmotic conditions serves osmoprotective function in nucleus pulposus cells. Journal of Biological Chemistry, 2018, 293, 8969-8981.	3.4	27
30	New horizons in spine research: Intervertebral disc repair and regeneration. Journal of Orthopaedic Research, 2017, 35, 5-7.	2.3	8
31	PHD3 is a transcriptional coactivator of HIFâ€1α in nucleus pulposus cells independent of the PKM2â€JMJD5 axis. FASEB Journal, 2017, 31, 3831-3847.	0.5	26
32	TNF-α promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells. Journal of Biological Chemistry, 2017, 292, 17561-17575.	3.4	39
33	Lack of evidence for involvement of TonEBP and hyperosmotic stimulus in induction of autophagy in the nucleus pulposus. Scientific Reports, 2017, 7, 4543.	3.3	14
34	Class I and IIa HDACs Mediate HIF-1α Stability Through PHD2-Dependent Mechanism, While HDAC6, a Class IIb Member, Promotes HIF-1α Transcriptional Activity in Nucleus Pulposus Cells of the Intervertebral Disc. Journal of Bone and Mineral Research, 2016, 31, 1287-1299.	2.8	40
35	Molecular mechanisms of biological aging in intervertebral discs. Journal of Orthopaedic Research, 2016, 34, 1289-1306.	2.3	270
36	RNA Sequencing Reveals a Role of TonEBP Transcription Factor in Regulation of Pro-inflammatory Genes in Response to Hyperosmolarity in Healthy Nucleus Pulposus Cells. Journal of Biological Chemistry, 2016, 291, 26686-26697.	3.4	26

#	Article	IF	CITATIONS
37	New Horizons in Spine Research: Disc biology, spine biomechanics and pathomechanisms of back pain. Journal of Orthopaedic Research, 2016, 34, 1287-1288.	2.3	3
38	N-cadherin is Key to Expression of the Nucleus Pulposus Cell Phenotype under Selective Substrate Culture Conditions. Scientific Reports, 2016, 6, 28038.	3.3	46
39	Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy, 2016, 12, 1631-1646.	9.1	89
40	Syndecan-4 in intervertebral disc and cartilage: Saint or synner?. Matrix Biology, 2016, 52-54, 355-362.	3.6	30
41	TGFβ regulates Galectin-3 expression through canonical Smad3 signaling pathway in nucleus pulposus cells: implications in intervertebral disc degeneration. Matrix Biology, 2016, 50, 39-52.	3.6	26
42	Circadian factors BMAL1 and RORÎ \pm control HIF-1Î \pm transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health. Oncotarget, 2016, 7, 23056-23071.	1.8	32
43	Substance P Receptor Antagonist Suppresses Inflammatory Cytokine Expression in Human Disc Cells. Spine, 2015, 40, 1261-1269.	2.0	16
44	Aquaporin 1 and 5 expression decreases during human intervertebral disc degeneration: novel HIF-1-mediated regulation of aquaporins in NP cells. Oncotarget, 2015, 6, 11945-11958.	1.8	22
45	Matrix vesicles: Are they anchored exosomes?. Bone, 2015, 79, 29-36.	2.9	148
46	Defining the phenotype of young healthy nucleus pulposus cells: Recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. Journal of Orthopaedic Research, 2015, 33, 283-293.	2.3	226
47	Prolyl-4-hydroxylase Domain Protein 2 Controls NF-κB/p65 Transactivation and Enhances the Catabolic Effects of Inflammatory Cytokines on Cells of the Nucleus Pulposus. Journal of Biological Chemistry, 2015, 290, 7195-7207.	3.4	46
48	Xylosyltransferase-1 Expression Is Refractory to Inhibition by the Inflammatory Cytokines Tumor Necrosis Factor α and IL-1β in Nucleus Pulposus Cells. American Journal of Pathology, 2015, 185, 485-495.	3.8	27
49	Understanding Nucleus Pulposus Cell Phenotype: A Prerequisite for Stem Cell Based Therapies to Treat Intervertebral Disc Degeneration. Current Stem Cell Research and Therapy, 2015, 10, 307-316.	1.3	61
50	Discovery of the drivers of inflammation induced chronic low back pain: from bacteria to diabetes. Discovery Medicine, 2015, 20, 177-84.	0.5	14
51	Loss of HIF-11 \pm in the Notochord Results in Cell Death and Complete Disappearance of the Nucleus Pulposus. PLoS ONE, 2014, 9, e110768.	2.5	83
52	FIH-1-Mint3 Axis Does Not Control HIF-1α Transcriptional Activity in Nucleus Pulposus Cells. Journal of Biological Chemistry, 2014, 289, 20594-20605.	3.4	21
53	Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: Evolving role of TonEBP. Matrix Biology, 2014, 40, 10-16.	3.6	102
54	HIFâ€lâ€PHD2 axis controls expression of syndecan 4 in nucleus pulposus cells. FASEB Journal, 2014, 28, 2455-2465.	0.5	30

#	Article	IF	CITATIONS
55	Differential Gene Expression in Anterior and Posterior Annulus Fibrosus. Spine, 2014, 39, 1917-1923.	2.0	18
56	CCN2 Suppresses Catabolic Effects of Interleukin-1β through α5β1 and αVβ3 Integrins in Nucleus Pulposus Cells. Journal of Biological Chemistry, 2014, 289, 7374-7387.	3.4	48
57	Introduction to the Structure, Function, and Comparative Anatomy of the Vertebrae and the Intervertebral Disc. , 2014, , 3-15.		12
58	Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews Rheumatology, 2014, 10, 44-56.	8.0	1,134
59	Tumor Necrosis Factor-α– and Interleukin-1β–Dependent Matrix Metalloproteinase-3 Expression in Nucleus Pulposus Cells Requires Cooperative Signaling via Syndecan 4 and Mitogen-Activated Protein Kinase–NF-κB Axis. American Journal of Pathology, 2014, 184, 2560-2572.	3.8	112
60	Microenvironmental Control of Disc Cell Function: Influence of Hypoxia and Osmotic Pressure. , 2014, , 93-108.		4
61	An organ culture system to model early degenerative changes of the intervertebral disc II: profiling global gene expression changes. Arthritis Research and Therapy, 2013, 15, R121.	3.5	38
62	Molecular regulation of CCN2 in the intervertebral disc: Lessons learned from other connective tissues. Matrix Biology, 2013, 32, 298-306.	3.6	29
63	Inflammatory Cytokines Associated with Degenerative Disc Disease Control Aggrecanase-1 (ADAMTS-4) Expression in Nucleus Pulposus Cells through MAPK and NF-κB. American Journal of Pathology, 2013, 182, 2310-2321.	3.8	171
64	Tumor necrosis factor α– and interleukinâ€1β–dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis and Rheumatism, 2013, 65, 832-842.	6.7	144
65	Expression and Relationship of Proinflammatory Chemokine RANTES/CCL5 and Cytokine IL-1β in Painful Human Intervertebral Discs. Spine, 2013, 38, 873-880.	2.0	110
66	Inflammatory Cytokines Induce NOTCH Signaling in Nucleus Pulposus Cells. Journal of Biological Chemistry, 2013, 288, 16761-16774.	3.4	93
67	Hypoxia-inducible Factor (HIF)-1α and CCN2 Form a Regulatory Circuit in Hypoxic Nucleus Pulposus Cells. Journal of Biological Chemistry, 2013, 288, 12654-12666.	3.4	40
68	Substance P Stimulates Production of Inflammatory Cytokines in Human Disc Cells. Spine, 2013, 38, E1291-E1299.	2.0	84
69	Prolyl Hydroxylase 3 (PHD3) Modulates Catabolic Effects of Tumor Necrosis Factor-α (TNF-α) on Cells of the Nucleus Pulposus through Co-activation of Nuclear Factor ήB (NF-ήB)/p65 Signaling. Journal of Biological Chemistry, 2012, 287, 39942-39953.	3.4	66
70	Expression of Prolyl Hydroxylases (PHDs) Is Selectively Controlled by HIF-1 and HIF-2 Proteins in Nucleus Pulposus Cells of the Intervertebral Disc. Journal of Biological Chemistry, 2012, 287, 16975-16986.	3.4	76
71	Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nature Communications, 2012, 3, 1264.	12.8	357
72	ls the spinal motion segment a diarthrodial polyaxial joint: What a nice nucleus like you doing in a joint like this?. Bone, 2012, 50, 771-776.	2.9	39

#	Article	IF	CITATIONS
73	Smad3 controls βâ€1,3â€glucuronosyltransferase 1 expression in rat nucleus pulposus cells: Implications of dysregulated expression in disc disease. Arthritis and Rheumatism, 2012, 64, 3324-3333.	6.7	12
74	Tonicity enhancer binding protein (TonEBP) and hypoxia-inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: Role of Hsp70 in HIF-1α degradation. Journal of Bone and Mineral Research, 2012, 27, 1106-1117.	2.8	45
75	HIF-1α and HIF-2α degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc. Journal of Bone and Mineral Research, 2012, 27, 401-412.	2.8	75
76	An organ culture system to model early degenerative changes of the intervertebral disc. Arthritis Research and Therapy, 2011, 13, R171.	3.5	57
77	Notochordal Cells in the Adult Intervertebral Disc: New Perspective on an Old Question. Critical Reviews in Eukaryotic Gene Expression, 2011, 21, 29-41.	0.9	141
78	Hypoxia activates the notch signaling pathway in cells of the intervertebral disc: Implications in degenerative disc disease. Arthritis and Rheumatism, 2011, 63, 1355-1364.	6.7	74
79	Hypoxic regulation of β-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: Role of hypoxia-inducible factor proteins. Arthritis and Rheumatism, 2011, 63, 1950-1960.	6.7	39
80	Transforming growth factor \hat{l}^2 controls CCN3 expression in nucleus pulposus cells of the intervertebral disc. Arthritis and Rheumatism, 2011, 63, 3022-3031.	6.7	25
81	TNF-α and IL-1β Promote a Disintegrin-like and Metalloprotease with Thrombospondin Type I Motif-5-mediated Aggrecan Degradation through Syndecan-4 in Intervertebral Disc. Journal of Biological Chemistry, 2011, 286, 39738-39749.	3.4	225
82	BMP-2 and TGF-β stimulate expression of β1,3-glucuronosyl transferase 1 (GlcAT-1) in nucleus pulposus cells through AP1, TonEBP, and Sp1: Role of MAPKs. Journal of Bone and Mineral Research, 2010, 25, 1179-1190.	2.8	56
83	Toward an understanding of the role of notochordal cells in the adult intervertebral disc: From discord to accord. Developmental Dynamics, 2010, 239, 2141-2148.	1.8	141
84	Regulation of CCN2/Connective tissue growth factor expression in the nucleus pulposus of the intervertebral disc: Role of Smad and activator protein 1 signaling. Arthritis and Rheumatism, 2010, 62, 1983-1992.	6.7	54
85	Hypoxiaâ€inducible factor regulation of ANK expression in nucleus pulposus cells: Possible implications in controlling dystrophic mineralization in the intervertebral disc. Arthritis and Rheumatism, 2010, 62, 2707-2715.	6.7	31
86	Enhancement of intervertebral disc cell senescence by WNT∫β atenin signaling–induced matrix metalloproteinase expression. Arthritis and Rheumatism, 2010, 62, 3036-3047.	6.7	129
87	Hypoxic Regulation of Nucleus Pulposus Cell Survival. American Journal of Pathology, 2010, 176, 1577-1583.	3.8	101
88	Transcriptional profiling of the nucleus pulposus: say yes to notochord. Arthritis Research and Therapy, 2010, 12, 117.	3.5	23
89	Reversine Enhances Generation of Progenitor-like Cells by Dedifferentiation of Annulus Fibrosus Cells. Tissue Engineering - Part A, 2010, 16, 1443-1455.	3.1	42
90	Activation of TonEBP by Calcium Controls β1,3-Glucuronosyltransferase-I Expression, a Key Regulator of Glycosaminoglycan Synthesis in Cells of the Intervertebral Disc. Journal of Biological Chemistry, 2009, 284, 9824-9834.	3.4	47

#	Article	IF	CITATIONS
91	PI3K/AKT regulates aggrecan gene expression by modulating Sox9 expression and activity in nucleus pulposus cells of the intervertebral disc. Journal of Cellular Physiology, 2009, 221, 668-676.	4.1	70
92	Osmolarity and Intracellular Calcium Regulate Aquaporin2 Expression Through TonEBP in Nucleus Pulposus Cells of the Intervertebral Disc. Journal of Bone and Mineral Research, 2009, 24, 992-1001.	2.8	44
93	Cited2 modulates hypoxiaâ€inducible factor–dependent expression of vascular endothelial growth factor in nucleus pulposus cells of the rat intervertebral disc. Arthritis and Rheumatism, 2008, 58, 3798-3808.	6.7	71
94	SMAD3 Functions as a Transcriptional Repressor of Acid-Sensing Ion Channel 3 (ASIC3) in Nucleus Pulposus Cells of the Intervertebral Disc. Journal of Bone and Mineral Research, 2008, 23, 1619-1628.	2.8	32
95	Normoxic stabilization of HIF-1α drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. American Journal of Physiology - Cell Physiology, 2007, 293, C621-C631.	4.6	157
96	Galectin-3 Expression in the Intervertebral Disc: A Useful Marker of the Notochord Phenotype?. Spine, 2007, 32, 9-16.	2.0	23
97	Fibroblast Growth Factor-2 Maintains the Differentiation Potential of Nucleus Pulposus Cells In Vitro. Spine, 2007, 32, 495-502.	2.0	53
98	Evidence for Skeletal Progenitor Cells in the Degenerate Human Intervertebral Disc. Spine, 2007, 32, 2537-2544.	2.0	256
99	MEK/ERK Signaling Controls Osmoregulation of Nucleus Pulposus Cells of the Intervertebral Disc by Transactivation of TonEBP/OREBP. Journal of Bone and Mineral Research, 2007, 22, 965-974.	2.8	96
100	HIF-1α Is a Regulator of Galectin-3 Expression in the Intervertebral Disc. Journal of Bone and Mineral Research, 2007, 22, 1851-1861.	2.8	89
101	Expression of Acid-Sensing Ion Channel 3 (ASIC3) in Nucleus Pulposus Cells of the Intervertebral Disc Is Regulated by p75NTR and ERK Signaling. Journal of Bone and Mineral Research, 2007, 22, 1996-2006.	2.8	73
102	Toward an Optimum System for Intervertebral Disc Organ Culture. Spine, 2006, 31, 884-890.	2.0	97
103	Osteogenic Potential of Adult Human Stem Cells of the Lumbar Vertebral Body and the Iliac Crest. Spine, 2006, 31, 83-89.	2.0	61
104	Nucleus pulposus cells express HIF- $1\hat{l}\pm$ under normoxic culture conditions: A metabolic adaptation to the intervertebral disc microenvironment. Journal of Cellular Biochemistry, 2006, 98, 152-159.	2.6	227
105	TonEBP/OREBP Is a Regulator of Nucleus Pulposus Cell Function and Survival in the Intervertebral Disc. Journal of Biological Chemistry, 2006, 281, 25416-25424.	3.4	90
106	Cellular Therapy for Disc Degeneration. Spine, 2005, 30, S14-S19.	2.0	41
107	Hypoxia Activates MAPK Activity in Rat Nucleus Pulposus Cells. Spine, 2005, 30, 2503-2509.	2.0	82
108	Nucleus Pulposus Cells Upregulate PI3K/Akt and MEK/ERK Signaling Pathways Under Hypoxic Conditions and Resist Apoptosis Induced by Serum Withdrawal. Spine, 2005, 30, 882-889.	2.0	115

#	Article	IF	CITATIONS
109	Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005, 26, 5983-5990.	11.4	1,447
110	Cell-based therapy for disc repair. Spine Journal, 2005, 5, S297-S303.	1.3	53
111	Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology, 2004, 22, 354-362.	9.3	995
112	Modeling of Phosphate Ion Transfer to the Surface of Osteoblasts under Normal Gravity and Simulated Microgravity Conditions. Annals of the New York Academy of Sciences, 2004, 1027, 85-98.	3.8	11
113	Current strategies for cell delivery in cartilage and bone regeneration. Current Opinion in Biotechnology, 2004, 15, 411-418.	6.6	169
114	Stem cell regeneration of the nucleus pulposus. Spine Journal, 2004, 4, S348-S353.	1.3	52
115	Differentiation of Mesenchymal Stem Cells Towards a Nucleus Pulposus-like Phenotype In Vitro: Implications for Cell-Based Transplantation Therapy. Spine, 2004, 29, 2627-2632.	2.0	283
116	In vivo biocompatibility evaluation of cellulose macrocapsules for islet immunoisolation: Implications of low molecular weight cut-off. Journal of Biomedical Materials Research Part B, 2003, 66A, 86-92.	3.1	24
117	Hydrogel-coated textile scaffolds as candidate in liver tissue engineering: II. Evaluation of spheroid formation and viability of hepatocytes. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 719-731.	3.5	37
118	Corrigendum to "Models of pancreatic regeneration in diabetes― Diabetes Research and Clinical Practice, 2003, 62, 211.	2.8	0
119	An Organ Culture System for the Study of the Nucleus Pulposus: Description of the System and Evaluation of the Cells. Spine, 2003, 28, 2652-2658.	2.0	62
120	Radio-frequency plasma treatment improves the growth and attachment of endothelial cells on poly(methyl methacrylate) substrates: implications in tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 1067-1080.	3.5	20
121	Nonporous Polyurethane Membranes as Islet Immunoisolation Matrices – Biocompatibility Studies. Journal of Biomaterials Applications, 2002, 16, 327-340.	2.4	21
122	Models of pancreatic regeneration in diabetes. Diabetes Research and Clinical Practice, 2002, 58, 155-165.	2.8	47
123	Tissue engineering: advances in in vitro cartilage generation. Trends in Biotechnology, 2002, 20, 351-356.	9.3	234
124	Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell and Tissue Research, 2002, 308, 401-407.	2.9	154
125	Immunocytochemical Localization of Growth Hormone-Releasing Hormone-like Peptide in the Brain of the Tiger Frog, Rana tigrina. General and Comparative Endocrinology, 2002, 126, 200-212.	1.8	1
126	Hydrogel-coated textile scaffolds as three-dimensional growth support for human umbilical vein endothelial cells (HUVECs): possibilities as coculture system in liver tissue engineering. Cell Transplantation, 2002, 11, 369-77.	2.5	5

#	Article	IF	CITATIONS
127	Biocompatibility assessment of polytetrafluoroethylene/wollastonite composites using endothelial cells and macrophages. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1177-1189.	3.5	11
128	Preparation, characterization and in vitro biocompatibility evaluation of poly(butylene) Tj ETQq0 0 0 rgBT /Overlo	2k 10 Tf 50) 702 Td (te 49
129	Suitability of cellulose molecular dialysis membrane for bioartificial pancreas:In vitro biocompatibility studies. Journal of Biomedical Materials Research Part B, 2001, 54, 436-444.	3.1	52

130	Biocompatible hydrogel supports the growth of respiratory epithelial cells: Possibilities in tracheal tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 56, 120-127.	3.1	63
131	Effect of chitosan-polyvinyl pyrrolidone hydrogel on proliferation and cytokine expression of endothelial cells: Implications in islet immunoisolation. Journal of Biomedical Materials Research Part B, 2001, 57, 300-305.	3.1	47
132	Tissue engineering: implications in the treatment of organ and tissue defects. , 2001, 2, 117-125.		46
133	Islet Cryopreservation: Improved Recovery following Taurine Pretreatment. Cell Transplantation, 2001, 10, 247-253.	2.5	15
134	lslet immunoisolation: experience with biopolymers. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1243-1252.	3.5	13
135	Selective cytotoxicity of MIA Pa Ca-2 conditioned medium to acinar cells: a novel approach to reduce acinar cell contaminants in isolated islet preparations from BALB/c mice. Transplant International, 2001, 14, 191-195.	1.6	0
136	Chitosan–Polyvinyl Pyrrolidone Hydrogels as Candidate for Islet Immunoisolation: In Vitro Biocompatibility Evaluation. Cell Transplantation, 2000, 9, 25-31.	2.5	39
137	pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. Journal of Controlled Release, 2000, 68, 23-30.	9.9	433
138	Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone hydrogel: Implications for wound management?. Journal of Biosciences, 2000, 25, 25-30.	1.1	69
139	A simple microcapsule generator design for islet encapsulation. Journal of Biosciences, 1999, 24, 371-376.	1.1	20
140	The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Frontiers in Immunology, 0, 13, .	4.8	5