J Paul Luzio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054433/publications.pdf

Version: 2024-02-01

94433 98798 6,403 70 37 67 h-index citations g-index papers 71 71 71 9861 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Current methods to analyze lysosome morphology, positioning, motility and function. Traffic, 2022, 23, 238-269.	2.7	37
2	Organelle tethering, pore formation and SNARE compensation in the late endocytic pathway. Journal of Cell Science, 2021, 134, .	2.0	6
3	A dysfunctional endolysosomal pathway common to two sub-types of demyelinating Charcot–Marie–Tooth disease. Acta Neuropathologica Communications, 2020, 8, 165.	5.2	6
4	Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nature Communications, 2020, 11, 5031.	12.8	21
5	A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nature Communications, 2020, 11, 5559.	12.8	52
6	The lysosomal disease caused by mutant VPS33A. Human Molecular Genetics, 2019, 28, 2514-2530.	2.9	24
7	CLN8 safeguards lysosome biogenesis. Nature Cell Biology, 2018, 20, 1333-1335.	10.3	6
8	The Lysosome and Intracellular Signalling. Progress in Molecular and Subcellular Biology, 2018, 57, 151-180.	1.6	33
9	BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers. Journal of Cell Biology, 2016, 214, 293-308.	5.2	67
10	Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity. Current Biology, 2016, 26, 2233-2245.	3.9	190
11	A Genetic Screen Identifies a Critical Role for the <scp>WDR81â€WDR91</scp> Complex in the Trafficking and Degradation of Tetherin. Traffic, 2016, 17, 940-958.	2.7	21
12	A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochemical Journal, 2015, 471, 79-88.	3.7	35
13	Lysosome fusion in cultured mammalian cells. Methods in Cell Biology, 2015, 126, 101-118.	1.1	10
14	Lysosomes. Current Biology, 2015, 25, R315-R316.	3.9	49
15	Recruitment of <scp>VPS33A</scp> to <scp>HOPS</scp> by <scp>VPS16</scp> Is Required for Lysosome Fusion with Endosomes and Autophagosomes. Traffic, 2015, 16, 727-742.	2.7	122
16	The Biogenesis of Lysosomes and Lysosome-Related Organelles. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016840-a016840.	5.5	255
17	VARP Is Recruited on to Endosomes by Direct Interaction with Retromer, Where Together They Function in Export to the Cell Surface. Developmental Cell, 2014, 29, 591-606.	7.0	110
18	Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13345-13350.	7.1	79

#	Article	IF	CITATIONS
19	The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation. Nature Structural and Molecular Biology, 2012, 19, 1300-1309.	8.2	68
20	Structural Basis of the Intracellular Sorting of the SNARE VAMP7 by the AP3 Adaptor Complex. Developmental Cell, 2012, 22, 979-988.	7.0	55
21	Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1. Microbiology (United Kingdom), 2010, 156, 2205-2215.	1.8	32
22	Endosome–lysosome fusion. Biochemical Society Transactions, 2010, 38, 1413-1416.	3.4	146
23	Delivery of endocytosed membrane proteins to the lysosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 615-624.	4.1	106
24	The delivery of endocytosed cargo to lysosomes. Biochemical Society Transactions, 2009, 37, 1019-1021.	3.4	118
25	ESCRT proteins and the regulation of endocytic delivery to lysosomes. Biochemical Society Transactions, 2009, 37, 178-180.	3.4	15
26	Molecular Basis for the Sorting of the SNARE VAMP7 into Endocytic Clathrin-Coated Vesicles by the ArfGAP Hrb. Cell, 2008, 134, 817-827.	28.9	148
27	Differential expression of the polysialyl capsule during blood-to-brain transit of neuropathogenic Escherichia coli K1. Microbiology (United Kingdom), 2008, 154, 2522-2532.	1.8	38
28	Lysosomes: fusion and function. Nature Reviews Molecular Cell Biology, 2007, 8, 622-632.	37.0	1,397
29	Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes. Current Opinion in Cell Biology, 2007, 19, 459-465.	5.4	144
30	Mucolipin-1 Is a Lysosomal Membrane Protein Required for Intracellular Lactosylceramide Traffic. Traffic, 2006, 7, 1388-1398.	2.7	143
31	Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO Journal, 2006, 25, 1635-1645.	7.8	234
32	Degradation of Endocytosed Epidermal Growth Factor and Virally Ubiquitinated Major Histocompatibility Complex Class I Is Independent of Mammalian ESCRTII. Journal of Biological Chemistry, 2006, 281, 5094-5105.	3.4	160
33	Theory of Organelle Biogenesis. , 2005, , 1-18.		5
34	Endocytic Delivery to Lysosomes Mediated by Concurrent Fusion and Kissing Events in Living Cells. Current Biology, 2005, 15, 360-365.	3.9	232
35	Membrane traffic to and from lysosomes Biochemical Society Symposia, 2005, 72, 77-86.	2.7	42
36	Mammalian Late Vacuole Protein Sorting Orthologues Participate in Early Endosomal Fusion and Interact with the Cytoskeleton. Molecular Biology of the Cell, 2004, 15, 1197-1210.	2.1	115

#	Article	IF	Citations
37	Protein-Protein Interactions of ESCRT Complexes in the Yeast Saccharomyces cerevisiae. Traffic, 2004, 5, 194-210.	2.7	180
38	Differential Use of Two AP-3-mediated Pathways by Lysosomal Membrane Proteins. Traffic, 2004, 5, 946-962.	2.7	66
39	Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Reports, 2004, 5, 590-595.	4.5	234
40	CUPpling calcium to lysosomal biogenesis. Trends in Cell Biology, 2004, 14, 471-473.	7.9	90
41	Membrane dynamics and the biogenesis of lysosomes (Review). Molecular Membrane Biology, 2003, 20, 141-154.	2.0	132
42	The Role of mVps18p in Clustering, Fusion, and Intracellular Localization of Late Endocytic Organelles. Molecular Biology of the Cell, 2003, 14, 4015-4027.	2.1	69
43	Role of Adaptor Complex AP-3 in Targeting Wild-Type and Mutated CD63 to Lysosomes. Molecular Biology of the Cell, 2002, 13, 1071-1082.	2.1	221
44	Controlled Elimination of Clathrin Heavy-Chain Expression in DT40 Lymphocytes. Science, 2002, 297, 1521-1525.	12.6	61
45	Late Endosomes: Sorting and Partitioning in Multivesicular Bodies. Traffic, 2001, 2, 612-621.	2.7	181
46	The Relationship Between Lumenal and Limiting Membranes in Swollen Late Endocytic Compartments Formed After Wortmannin Treatment or Sucrose Accumulation. Traffic, 2001, 2, 631-642.	2.7	66
47	Syntaxin 7 Complexes with Mouse Vps10p Tail Interactor 1b, Syntaxin 6, Vesicle-associated Membrane Protein (VAMP)8, and VAMP7 in B16 Melanoma Cells. Journal of Biological Chemistry, 2001, 276, 19820-19827.	3.4	79
48	Endolyn is a mucin-like type I membrane protein targeted to lysosomes by its cytoplasmic tail. Biochemical Journal, 2000, 345, 287-296.	3.7	44
49	Syntaxin 7 ls Localized to Late Endosome Compartments, Associates with Vamp 8, and Is Required for Late Endosome–Lysosome Fusion. Molecular Biology of the Cell, 2000, 11, 3137-3153.	2.1	144
50	The Role of Intraorganellar Ca2+In Late Endosome–Lysosome Heterotypic Fusion and in the Reformation of Lysosomes from Hybrid Organelles. Journal of Cell Biology, 2000, 149, 1053-1062.	5.2	325
51	Cell polarization is required for ricin sensitivity in a Caco-2 cell line selected for ricin resistance. Biochemical Journal, 1999, 341, 323-327.	3.7	6
52	Lumenal and Transmembrane Domains Play a Role in Sorting Type I Membrane Proteins on Endocytic Pathways. Molecular Biology of the Cell, 1998, 9, 1107-1122.	2.1	43
53	TGN38 cyclesviathe basolateral membrane of polarized Caco-2 cells. Molecular Membrane Biology, 1998, 15, 133-139.	2.0	9
54	Differential modulation of apical and basolateral endocytosis in Caco-2 cells. Biochemical Society Transactions, 1995, 23, 184S-184S.	3.4	4

#	Article	IF	CITATIONS
55	Identification of a protein capable of causing fusion of endosome and lysosome membranes. Biochemical Society Transactions, 1993, 21, 299-300.	3.4	8
56	Cell-free interactions between rat-liver endosomes and lysosomes. Biochemical Society Transactions, 1993, 21, 721-722.	3.4	2
57	Endocytic and transcytic pathways in Caco-2 cells. Biochemical Society Transactions, 1992, 20, 717-719.	3.4	12
58	Reconstitution in vitro of events on the endocytic pathway for asialoglycoproteins in rat hepatocytes. Biochemical Society Transactions, 1987, 15, 438-439.	3.4	1
59	Interactions of Gram-negative bacteria and reconstituted liposomes incorporating C5b-9 complement complexes. Biochemical Society Transactions, 1987, 15, 646-646.	3.4	2
60	The structure and function of complement component C8 investigated with monoclonal antibodies. Biochemical Society Transactions, 1987, 15, 649-650.	3.4	2
61	The preparative isolation of endosome fractions: A review. Cell Biochemistry and Function, 1987, 5, 235-243.	2.9	18
62	How are intrinsic liver membrane proteins released into blood?. Biochemical Society Transactions, 1986, 14, 780-781.	3.4	4
63	Immunoaffinity purification of subcellular particles and organelles. Applied Biochemistry and Biotechnology, 1986, 13, 133-145.	2.9	16
64	Monoclonal antibodies and the structure of complement component C9. Biochemical Society Transactions, 1985, 13, 105-106.	3.4	0
65	Identification of histidyl and cysteinyl residues essential for catalysis by 5′-nucleotidase. FEBS Letters, 1984, 167, 235-240.	2.8	28
66	The Rapid Increase in Intracellular Free Calcium Ion Concentration Induced by Complement and its Role in Cell Damage. Biochemical Society Transactions, 1979, 7, 1066-1068.	3.4	13
67	The Subcellular Distribution of $5\hat{a}\in^2$ -Nucleotidase in Isolated Fat-Cells and Liver Cells from Rat. Biochemical Society Transactions, 1979, 7, 361-362.	3.4	8
68	Rapid Internalization of Plasma-Membrane 5′-Nucleotidase in Rat Spleen Lymphocytes in Response to Rabbit Anti-(Rat Liver 5′-Nucleotidase) Serum. Biochemical Society Transactions, 1979, 7, 1023-1024.	3.4	7
69	The Importance of Measuring Intracellular Free Ca2+. Biochemical Society Transactions, 1979, 7, 865-869.	3.4	7
70	The Origin of Biphasic Arrhenius plots of Rat Liver Plasma-Membrane 5′-Nucleotidase. Biochemical Society Transactions, 1978, 6, 1361-1363.	3.4	0