
Leoni A Kunz-Schughart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9054262/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validation of CD98hc as a Therapeutic Target for a Combination of Radiation and Immunotherapies in Head and Neck Squamous Cell Carcinoma. Cancers, 2022, 14, 1677.	1.7	7
2	Intracellular Amplifiers of Reactive Oxygen Species Affecting Mitochondria as Radiosensitizers. Cancers, 2022, 14, 208.	1.7	5
3	Targeting of p21-Activated Kinase 4 Radiosensitizes Glioblastoma Cells via Impaired DNA Repair. Cells, 2022, 11, 2133.	1.8	2
4	Indospicine combined with arginine deprivation triggers cancer cell death via caspaseâ€dependent apoptosis. Cell Biology International, 2021, 45, 518-527.	1.4	2
5	Dual role of ER stress in response to metabolic co-targeting and radiosensitivity in head and neck cancer cells. Cellular and Molecular Life Sciences, 2021, 78, 3021-3044.	2.4	8
6	Reciprocal interactions between tumour cell populations enhance growth and reduce radiation sensitivity in prostate cancer. Communications Biology, 2021, 4, 6.	2.0	23
7	GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics, 2021, 11, 7844-7868.	4.6	70
8	Mathematical model for the thermal enhancement of radiation response: thermodynamic approach. Scientific Reports, 2021, 11, 5503.	1.6	11
9	Efficient Heat Shock Response Affects Hyperthermia-Induced Radiosensitization in a Tumor Spheroid Control Probability Assay. Cancers, 2021, 13, 3168.	1.7	3
10	Models for Translational Proton Radiobiology—From Bench to Bedside and Back. Cancers, 2021, 13, 4216.	1.7	11
11	MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nature Methods, 2021, 18, 1294-1303.	9.0	38
12	An ovarian spheroid based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale, 2020, 12, 1894-1903.	2.8	22
13	Microenvironmentally-driven Plasticity of CD44 isoform expression determines Engraftment and Stem-like Phenotype in CRC cell lines. Theranostics, 2020, 10, 7599-7621.	4.6	11
14	Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline. Scientific Reports, 2020, 10, 9118.	1.6	31
15	SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC). Scientific Reports, 2020, 10, 8615.	1.6	8
16	The CD98 Heavy Chain Is a Marker and Regulator of Head and Neck Squamous Cell Carcinoma Radiosensitivity. Clinical Cancer Research, 2019, 25, 3152-3163.	3.2	53
17	Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin. Cancers, 2019, 11, 2028.	1.7	23
18	Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clinical Cancer Research, 2018, 24, 2482-2490	3.2	687

LEONI A KUNZ-SCHUGHART

#	Article	IF	CITATIONS
19	Arginine Deprivation Therapy: Putative Strategy to Eradicate Glioblastoma Cells by Radiosensitization. Molecular Cancer Therapeutics, 2018, 17, 393-406.	1.9	25
20	A Complex Scenario and Underestimated Challenge: The Tumor Microenvironment, ER Stress, and Cancer Treatment. Current Medicinal Chemistry, 2018, 25, 2465-2502.	1.2	20
21	The why and how of amino acid analytics in cancer diagnostics and therapy. Journal of Biotechnology, 2017, 242, 30-54.	1.9	48
22	Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials, 2017, 120, 155-184.	5.7	87
23	Efficacy of Beta1 Integrin and EGFR Targeting in Sphere-Forming Human Head and Neck Cancer Cells. Journal of Cancer, 2016, 7, 736-745.	1.2	15
24	Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability. Oncotarget, 2016, 7, 73292-73308.	0.8	9
25	The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nature Communications, 2016, 7, 12308.	5.8	173
26	Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution. Experimental Cell Research, 2016, 341, 67-74.	1.2	13
27	Arginine deprivation induces endoplasmic reticulum stress in human solid cancer cells. International Journal of Biochemistry and Cell Biology, 2016, 70, 29-38.	1.2	32
28	Aldehyde Dehydrogenase Is Regulated by β-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells. Cancer Research, 2015, 75, 1482-1494.	0.4	195
29	Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget, 2015, 6, 34494-34509.	0.8	88
30	Macromolecule Extravasation—Xenograft Size Matters: A Systematic Study Using Probe-Based Confocal Laser Endomicroscopy (pCLE). Molecular Imaging and Biology, 2013, 15, 693-702.	1.3	5
31	Discovery of the cancer stem cell related determinants of radioresistance. Radiotherapy and Oncology, 2013, 108, 378-387.	0.3	159
32	Three-dimensional environment renders cancer cells profoundly less susceptible to a single amino acid starvation. Amino Acids, 2013, 45, 1221-1230.	1.2	16
33	CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. Journal of Pathology, 2013, 229, 355-378.	2.1	252
34	Cancer Stem Cells as a Predictive Factor in Radiotherapy. Seminars in Radiation Oncology, 2012, 22, 151-174.	1.0	83
35	Single amino acid arginine starvation efficiently sensitizes cancer cells to canavanine treatment and irradiation. International Journal of Cancer, 2012, 130, 2164-2175.	2.3	41
36	Characterization and modulation of fibroblast/endothelial cell co-cultures for the <i>in vitro</i> preformation of three-dimensional tubular networks. Cell Biology International, 2011, 35, 1097-1110.	1.4	37

LEONI A KUNZ-SCHUGHART

#	Article	IF	CITATIONS
37	Microarrays for the scalable production of metabolically relevant tumour spheroids: a tool for modulating chemosensitivity traits. Lab on A Chip, 2011, 11, 419-428.	3.1	78
38	Genome and Transcriptome Profiles of CD133-Positive Colorectal Cancer Cells. American Journal of Pathology, 2011, 178, 1478-1488.	1.9	20
39	Relevance of disease- and organ-specific endothelial cells forin vitroresearch. Cell Biology International, 2010, 34, 1231-1238.	1.4	15
40	Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology, 2010, 148, 3-15.	1.9	1,376
41	Importance of CCL2-CCR2A/2B signaling for monocyte migration into spheroids of breast cancer-derived fibroblasts. Immunobiology, 2010, 215, 737-747.	0.8	58
42	CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116. Radiotherapy and Oncology, 2010, 94, 375-383.	0.3	32
43	Spheroid-based drug screen: considerations and practical approach. Nature Protocols, 2009, 4, 309-324.	5.5	1,353
44	Impact of exogenous lactate on survival and radioresponse of carcinoma cells in vitro. International Journal of Radiation Biology, 2009, 85, 989-1001.	1.0	14
45	Fibroblastic reaction and vascular maturation in human colon cancers. International Journal of Radiation Biology, 2009, 85, 1013-1025.	1.0	11
46	Temozolomide Preferentially Depletes Cancer Stem Cells in Glioblastoma. Cancer Research, 2008, 68, 5706-5715.	0.4	269
47	Validity of a patient-derived system of tissue-specific human endothelial cells: interleukin-6 as a surrogate marker in the coronary system. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1721-H1728.	1.5	4
48	<i>In vivo</i> Imaging of the Systemic Recruitment of Fibroblasts to the Angiogenic Rim of Ovarian Carcinoma Tumors. Cancer Research, 2007, 67, 9180-9189.	0.4	90
49	Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood, 2007, 109, 3812-3819.	0.6	1,361
50	A Reliable Tool to Determine Cell Viability in Complex 3-D Culture: The Acid Phosphatase Assay. Journal of Biomolecular Screening, 2007, 12, 925-937.	2.6	178
51	Lactate adversely affects the in vitro formation of endothelial cell tubular structures through the action of TGF-β1. Experimental Cell Research, 2007, 313, 2531-2549.	1.2	25
52	Experimental anti-tumor therapy in 3-D: Spheroids – old hat or new challenge?. International Journal of Radiation Biology, 2007, 83, 849-871.	1.0	384
53	Brave Little World: Spheroids as an in vitro Model to Study Tumor-Immune-Cell Interactions. Cell Cycle, 2006, 5, 691-695.	1.3	77
54	Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood, 2006, 107, 2013-2021.	0.6	541

LEONI A KUNZ-SCHUGHART

#	Article	IF	CITATIONS
55	Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. American Journal of Physiology - Cell Physiology, 2006, 290, C1385-C1398.	2.1	155
56	The fibroblast: Sentinel cell and local immune modulator in tumor tissue. International Journal of Cancer, 2004, 108, 173-180.	2.3	163
57	The Use of 3-D Cultures for High-Throughput Screening: The Multicellular Spheroid Model. Journal of Biomolecular Screening, 2004, 9, 273-285.	2.6	689
58	Tumor-Derived Lactic Acid Modulates Dendritic Cell Activation and Differentiation Blood, 2004, 104, 4246-4246.	0.6	1
59	Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists?. Journal of Cancer Research and Clinical Oncology, 2003, 129, 321-326.	1.2	93
60	Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. European Journal of Immunology, 2003, 33, 1311-1320.	1.6	123
61	Identification of genes expressed in tumor-associated macrophages. Immunobiology, 2003, 207, 351-359.	0.8	21
62	Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-β1. American Journal of Physiology - Cell Physiology, 2003, 284, C209-C219.	2.1	33
63	Phosphorous metabolites and steady-state energetics of transformed fibroblasts during three-dimensional growth. American Journal of Physiology - Cell Physiology, 2002, 283, C1287-C1297.	2.1	6
64	Three-dimensional fibroblast-tumor cell interaction causes downregulation of RACK1 mRNA expression in breast cancer cellsin vitro. International Journal of Cancer, 2002, 102, 129-136.	2.3	45
65	A Heterologous 3-D Coculture Model of Breast Tumor Cells and Fibroblasts to Study Tumor-Associated Fibroblast Differentiation. Experimental Cell Research, 2001, 266, 74-86.	1.2	124
66	Multicellular spheroids: a threeâ€dimensionalin vitroculture system to study tumour biology. International Journal of Experimental Pathology, 1998, 79, 1-23.	0.6	300
67	Three-dimensional cell culture induces novel proliferative and metabolic alterations associated with oncogenic transformation. , 1996, 66, 578-586.		47