
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9053853/publications.pdf Version: 2024-02-01

Існак Анмар

#	Article	IF	CITATIONS
1	Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 2012, 37, 93-99.	5.2	1,045
2	Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 2012, 19, 855-866.	4.9	674
3	Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 2017, 132, 368-393.	3.8	475
4	Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 2012, 88, 772-779.	10.2	402
5	Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers, 2012, 88, 465-473.	10.2	341
6	Advances in cellulose nanomaterials. Cellulose, 2018, 25, 2151-2189.	4.9	329
7	Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Industrial Crops and Products, 2016, 93, 227-234.	5.2	207
8	Cellulose nanocrystal: A promising toughening agent for unsaturated polyester nanocomposite. Polymer, 2015, 56, 346-357.	3.8	167
9	Effects of Rice Husk Filler on the Mechanical and Thermal Properties of Liquid Natural Rubber Compatibilized High-Density Polyethylene/Natural Rubber Blends. Journal of Polymer Research, 2006, 13, 315-321.	2.4	132
10	Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers, 2013, 92, 2299-2305.	10.2	126
11	Isolation and Characterization of Cellulose Nanocrystals from Agave angustifolia Fibre. BioResources, 2013, 8, .	1.0	126
12	Starch biocomposite film reinforced by multiscale rice husk fiber. Composites Science and Technology, 2017, 151, 147-155.	7.8	100
13	Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydrate Polymers, 2017, 163, 261-269.	10.2	93
14	Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination. Materials Science and Engineering C, 2019, 99, 37-46.	7.3	78
15	Gamma Irradiation-Assisted Synthesis of Cellulose Nanocrystal-Reinforced Gelatin Hydrogels. Nanomaterials, 2018, 8, 749.	4.1	76
16	Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review. International Journal of Biological Macromolecules, 2021, 187, 732-741.	7.5	74
17	Effect of Extrusion Rate and Fiber Loading on Mechanical Properties of Twaron Fiber-thermoplastic Natural Rubber (TPNR) Composites. Journal of Reinforced Plastics and Composites, 2006, 25, 957-965.	3.1	72
18	Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid) Reinforced with Cellulose Nanocrystals. Nanomaterials, 2017, 7, 399.	4.1	69

#	Article	IF	CITATIONS
19	Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers. Materials & Design, 2011, 32, 4493-4501.	5.1	64
20	The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. International Journal of Pharmaceutics, 2019, 566, 631-640.	5.2	59
21	Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: Effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer, 2015, 71, 51-59.	3.8	54
22	Electrochemical performance of poly(3, 4-ethylenedioxythipohene)/nanocrystalline cellulose (PEDOT/NCC) film for supercapacitor. Carbohydrate Polymers, 2019, 203, 128-138.	10.2	51
23	Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polymer Testing, 2016, 54, 196-202.	4.8	50
24	Effect of Fiber Content, Fiber Length and Alkali Treatment on Properties of Kenaf Fiber/UPR Composites Based on Recycled PET Wastes. Polymer-Plastics Technology and Engineering, 2012, 51, 634-639.	1.9	49
25	Effect of Aminosilane Modification on Nanocrystalline Cellulose Properties. Journal of Nanomaterials, 2016, 2016, 1-8.	2.7	47
26	Effect of Chemical Treatment on Mechanical and Water-Sorption Properties Coconut Fiber-Unsaturated Polyester from Recycled PET. ISRN Materials Science, 2012, 2012, 1-8.	1.0	40
27	MORPHOLOGICAL, THERMAL, AND MECHANICAL PROPERTIES OF STARCH BIOCOMPOSITE FILMS REINFORCED BY CELLULOSE NANOCRYSTALS FROM RICE HUSKS. BioResources, 2012, 7, .	1.0	40
28	Functionalized liquid natural rubber and liquid epoxidized natural rubber: A promising green toughening agent for polyester. Journal of Applied Polymer Science, 2015, 132, .	2.6	40
29	Potential of using polyester reinforced coconut fiber composites derived from recycling polyethylene terephthalate (PET) waste. Fibers and Polymers, 2013, 14, 584-590.	2.1	39
30	The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of Poly(lactic acid). Journal of Cleaner Production, 2018, 198, 987-995.	9.3	38
31	Reinforcement of natural rubber/high density polyethylene blends with electron beam irradiated liquid natural rubber-coated rice husk. Radiation Physics and Chemistry, 2010, 79, 906-911.	2.8	36
32	Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin. Carbohydrate Polymers, 2021, 254, 117401.	10.2	36
33	Application of polymethylmethacrylate-grafted cellulose as reinforcement for compatibilised polylactic acid/natural rubber blends. Carbohydrate Polymers, 2019, 213, 50-58.	10.2	35
34	Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic) Tj ETQq0 0 0	rgBT /Ove	rlggk 10 Tf 5

35	Drug delivery and inÂvitro biocompatibility studies of gelatin-nanocellulose smart hydrogels cross-linked with gamma radiation. Journal of Materials Research and Technology, 2021, 15, 7145-7157.	5.8	29
36	Effects of fiber composition andgraft-copoly(ethylene/maleic anhydride) on thermoplastic natural rubber composites reinforced by aramid fiber. Polymer Composites, 2006, 27, 395-401.	4.6	27

#	Article	IF	CITATIONS
37	Nylon-6/liquid natural rubber blends prepared via emulsion dispersion. Journal of Polymer Research, 2009, 16, 381-387.	2.4	25
38	Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate. Carbohydrate Polymers, 2015, 125, 69-75.	10.2	24
39	Synergistic Effect of Hybridized Cellulose Nanocrystals and Organically Modified Montmorillonite on κ-Carrageenan Bionanocomposites. Nanomaterials, 2018, 8, 874.	4.1	22
40	pH-Responsive Gamma-Irradiated Poly(Acrylic Acid)-Cellulose-Nanocrystal-Reinforced Hydrogels. Polymers, 2020, 12, 1932.	4.5	22
41	Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic) Tj ETQq1 1	0.784314 4.9	rgBT /Over
42	Effect of PE-g-MA-Compatibilizer on the Morphology and Mechanical Properties of 70/30 HDPE/ENR Blends. Polymer-Plastics Technology and Engineering, 2006, 45, 735-739.	1.9	18
43	Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon dioxide capture. Journal of Materials Research and Technology, 2021, 13, 2287-2296.	5.8	18
44	Redox copolymerization of acrylonitrile with fumaronitrile as a precursor for carbon fibre. Journal of Polymer Research, 2007, 14, 379-385.	2.4	17
45	Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber. Materials, 2014, 7, 6207-6223.	2.9	17
46	Toughened polyester cellulose nanocomposites: Effects of cellulose nanocrystals and liquid epoxidized natural rubber on morphology and mechanical properties. Industrial Crops and Products, 2015, 72, 125-132.	5.2	17
47	Eco-friendly high-density polyethylene/amorphous cellulose composites: Environmental and functional value. Journal of Cleaner Production, 2021, 290, 125886.	9.3	17
48	Potential Use of Cellulose from Kenaf in Polymer Electrolytes Based on MG49 Rubber Composites. BioResources, 2013, 8, .	1.0	15
49	Physicochemical Characterization of Bilayer Hybrid Nanocellulose-Collagen as a Potential Wound Dressing. Materials, 2020, 13, 4352.	2.9	14
50	Effects of Hybridized Organically Modified Montmorillonite and Cellulose Nanocrystals on Rheological Properties and Thermal Stability of K-Carrageenan Bio-Nanocomposite. Nanomaterials, 2019, 9, 1547.	4.1	13
51	Cauliflowerâ€like poly(3,4â€ethylenedioxythipohene)/nanocrystalline cellulose/manganese oxide ternary nanocomposite for supercapacitor. Journal of Applied Polymer Science, 2020, 137, 49162.	2.6	12
52	Functional Hydrophilic Membrane for Oil–Water Separation Based on Modified Bio-Based Chitosan–Gelatin. Polymers, 2021, 13, 1176.	4.5	12
53	Preparation and Characterization of Cellulose Nanocrystals from <i>Typha</i> sp. as a Reinforcing Agent. Journal of Natural Fibers, 2022, 19, 6182-6195.	3.1	12
54	Effect of Fiber Loading and Compatibilizer on Rheological, Mechanical and Morphological Behaviors. Open Journal of Polymer Chemistry, 2012, 02, 31-41.	3.3	11

#	Article	IF	CITATIONS
55	Starch/Polyaniline Biopolymer Film as Potential Intelligent Food Packaging with Colourimetric Ammonia Sensor. Polymers, 2022, 14, 1122.	4.5	11
56	Preparation of Unsaturated Polyester Liquid Natural Rubber Reinforced by Montmorillonite. Journal of Reinforced Plastics and Composites, 2010, 29, 2834-2841.	3.1	10
57	Effects of PBO fiber and clay on the mechanical, morphological, and dynamic mechanical properties of NR/HDPE blends. Polymer Engineering and Science, 2011, 51, 419-425.	3.1	9
58	Properties of Aminosilane Modified Nanocrytalline Cellulose (NCC) from Oil Palm Empty Fruit Bunch (OPEFB) Fibers. Materials Science Forum, 0, 888, 284-289.	0.3	8
59	Structural Characterisation of Cellulose and Nanocellulose Extracted from Mengkuang Leaves. Advanced Materials Research, 0, 545, 119-123.	0.3	7
60	Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation. AIP Conference Proceedings, 2013, , .	0.4	7
61	Development of grafted rubber/polyaniline/carboxymethyl cellulose film as green conductive polymer film. Polymer Bulletin, 2022, 79, 3829-3846.	3.3	6
62	Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf. AIP Conference Proceedings, 2013, , .	0.4	4
63	Mechanical Properties of Recycled Plastics. Composites Science and Technology, 2021, , 239-258.	0.6	4
64	Preparation of hybrid nano biocomposite \hat{I}^{2} -carrageenan/cellulose nanocrystal/nanoclay. , 2013, , .		3
65	Synthesis and characterization of poly (benzyl trimethyl ammonium chloride) ionic polymer. AIP Conference Proceedings, 2018, , .	0.4	3
66	Effects of Clay and LNR on Mechanical Properties and Morphology of NR/HDPE-Aramid Composites. Polymer Journal, 2005, 37, 866-869.	2.7	2
67	Physicochemical properties of phosphate ester from palm kernel oil. , 2013, , .		1
68	Physical properties of agave cellulose graft polymethyl methacrylate. , 2013, , .		1
69	Chemical treatment of grafted rubberâ€based conductive polymer film for homogeneity improvement. Journal of Applied Polymer Science, 2021, 138, 51455.	2.6	1
70	Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent. AIP Conference Proceedings, 2018, , .	0.4	0
71	Rubber toughened polyester cellulose nanocomposites. AIP Conference Proceedings, 2018, , .	0.4	0