Christiane Wolz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9052765/publications.pdf

Version: 2024-02-01

31976 54911 8,276 121 53 84 citations h-index g-index papers 125 125 125 7523 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Suicidal erythrocyte death in sepsis. Journal of Molecular Medicine, 2007, 85, 273-281.	3.9	277
2	Diversity of Prophages in Dominant <i>Staphylococcus aureus</i> Clonal Lineages. Journal of Bacteriology, 2009, 191, 3462-3468.	2.2	257
3	The Stringent Response of Staphylococcus aureus and Its Impact on Survival after Phagocytosis through the Induction of Intracellular PSMs Expression. PLoS Pathogens, 2012, 8, e1003016.	4.7	209
4	Direct Quantitative Transcript Analysis of theagr Regulon of Staphylococcus aureus during Human Infection in Comparison to the Expression Profile In Vitro. Infection and Immunity, 2000, 68, 1304-1311.	2.2	207
5	Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nature Communications, 2020, 11, 2200.	12.8	197
6	CodY in <i>Staphylococcus aureus</i> : a Regulatory Link between Metabolism and Virulence Gene Expression. Journal of Bacteriology, 2009, 191, 2953-2963.	2.2	195
7	Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2006, 50, 171-177.	3.2	190
8	Phages of Staphylococcus aureus and their impact on host evolution. Infection, Genetics and Evolution, 2014, 21, 593-601.	2.3	184
9	Staphylococcus aureus CcpA Affects Virulence Determinant Production and Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2006, 50, 1183-1194.	3. 2	179
10	The Virulence Regulator Sae of (i) Staphylococcus aureus: (i) Promoter Activities and Response to Phagocytosis-Related Signals. Journal of Bacteriology, 2008, 190, 3419-3428.	2.2	166
11	Influence of the Two-Component System SaeRS on Global Gene Expression in Two Different Staphylococcus aureus Strains. Journal of Bacteriology, 2006, 188, 7742-7758.	2.2	164
12	Cytoplasmic replication of <i>Staphylococcus aureus</i> upon phagosomal escape triggered by phenol-soluble modulin î±. Cellular Microbiology, 2014, 16, 451-465.	2.1	160
13	Two Small (p)ppGpp Synthases in Staphylococcus aureus Mediate Tolerance against Cell Envelope Stress Conditions. Journal of Bacteriology, 2014, 196, 894-902.	2,2	159
14	Biofilm Formation, icaADBC Transcription, and Polysaccharide Intercellular Adhesin Synthesis by Staphylococci in a Device-Related Infection Model. Infection and Immunity, 2005, 73, 1811-1819.	2.2	157
15	Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alpha-toxin during device-related infection resolved by direct quantitative transcript analysis. Molecular Microbiology, 2001, 40, 1439-1447.	2.5	155
16	<i>Staphylococcus aureus</i> CcpA Affects Biofilm Formation. Infection and Immunity, 2008, 76, 2044-2050.	2.2	153
17	Differential Target Gene Activation by the <i>Staphylococcus aureus</i> Two-Component System <i>saeRS</i> . Journal of Bacteriology, 2010, 192, 613-623.	2.2	150
18	Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature, 2018, 563, 705-709.	27.8	137

#	Article	IF	CITATIONS
19	Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Molecular Microbiology, 2006, 61, 1673-1685.	2.5	136
20	Staphylococcus aureus determinants for nasal colonization. Trends in Microbiology, 2012, 20, 243-250.	7.7	127
21	Agr-independent regulation of fibronectin-binding protein(s) by the regulatory locus sar in Staphylococcus aureus. Molecular Microbiology, 2000, 36, 230-243.	2.5	123
22	Role of the (p)ppGpp Synthase RSH, a RelA/SpoT Homolog, in Stringent Response and Virulence of <i>Staphylococcus aureus </i> . Infection and Immunity, 2010, 78, 1873-1883.	2.2	123
23	Molecular Architecture of the Regulatory Locus sae of Staphylococcus aureus and Its Impact on Expression of Virulence Factors. Journal of Bacteriology, 2003, 185, 6278-6286.	2.2	120
24	Adherence of Staphylococcus aureus to Endothelial Cells: Influence of Capsular Polysaccharide, Global Regulator agr, and Bacterial Growth Phase. Infection and Immunity, 2000, 68, 4865-4871.	2.2	117
25	Temporal Expression of Adhesion Factors and Activity of Global Regulators during Establishment of <i>Staphylococcus aureus </i> Nasal Colonization. Journal of Infectious Diseases, 2010, 201, 1414-1421.	4.0	114
26	Role of Staphylococcus aureus Global Regulators sae and ÏfB in Virulence Gene Expression during Device-Related Infection. Infection and Immunity, 2005, 73, 3415-3421.	2.2	111
27	Adaptation of Staphylococcus aureus to the cystic fibrosis lung. International Journal of Medical Microbiology, 2010, 300, 520-525.	3. 6	108
28	Human NACHT, LRR, and PYD domain–containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. Journal of Allergy and Clinical Immunology, 2017, 140, 1054-1067.e10.	2.9	105
29	Intersection of the stringent response and the CodY regulon in low GC Gram-positive bacteria. International Journal of Medical Microbiology, 2014, 304, 150-155.	3.6	103
30	Regulatory Adaptation of Staphylococcus aureus during Nasal Colonization of Humans. PLoS ONE, 2010, 5, e10040.	2. 5	101
31	Increased Frequency of Genomic Alterations inStaphylococcus aureusduring Chronic Infection Is in Part Due to Phage Mobilization. Journal of Infectious Diseases, 2004, 189, 724-734.	4.0	99
32	Pseudomonas aeruginosacross-colonization and persistence in patients with cystic fibrosis. Use of a DNA probe. Epidemiology and Infection, 1989, 102, 205-214.	2.1	98
33	The staphylococcal respiratory response regulator SrrAB induces <i>ica</i> gene transcription and polysaccharide intercellular adhesin expression, protecting <i>Staphylococcus aureus</i> from neutrophil killing under anaerobic growth conditions. Molecular Microbiology, 2007, 65, 1276-1287.	2.5	94
34	The CodY pleiotropic repressor controls virulence in gram-positive pathogens. FEMS Immunology and Medical Microbiology, 2011, 62, 123-139.	2.7	94
35	Global Analysis of the Staphylococcus aureus Response to Mupirocin. Antimicrobial Agents and Chemotherapy, 2012, 56, 787-804.	3.2	88
36	Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 3314-3323.	1.8	87

3

#	Article	IF	CITATIONS
37	Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. Journal of Antimicrobial Chemotherapy, 2014, 69, 2361-2368.	3.0	87
38	Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nature Communications, 2016, 7, 12304.	12.8	86
39	Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nature Microbiology, 2017, 2, 16257.	13.3	81
40	Regulatory and genomic plasticity of Staphylococcus aureus during persistent colonization and infection. International Journal of Medical Microbiology, 2004, 294, 195-202.	3.6	80
41	Import and Spread of Panton-Valentine Leukocidin–Positive Staphylococcus aureus Through Nasal Carriage and Skin Infections in Travelers Returning From the Tropics and Subtropics. Clinical Infectious Diseases, 2012, 54, 483-492.	5.8	78
42	Two Distinct Coagulase-Dependent Barriers Protect Staphylococcus aureus from Neutrophils in a Three Dimensional in vitro Infection Model. PLoS Pathogens, 2012, 8, e1002434.	4.7	77
43	Transcription of Clumping Factor A in Attached and Unattached Staphylococcus aureus In Vitro and during Device-Related Infection. Infection and Immunity, 2002, 70, 2758-2762.	2.2	76
44	$ f < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B < \sup B <$	2.2	72
45	RNase Y of <i>Staphylococcus aureus</i> and its role in the activation of virulence genes. Molecular Microbiology, 2012, 85, 817-832.	2.5	72
46	Functional Characterization of the $if < sup > B < sup > -Dependent < i > yab < i > - < i > spo VG < i > Operon in < i > Staphylococcus aureus < i > : Role in Methicillin and Glycopeptide Resistance. Antimicrobial Agents and Chemotherapy, 2009, 53, 1832-1839.$	3.2	70
47	sae is essential for expression of the staphylococcal adhesins Eap and Emp. Microbiology (United) Tj ETQq $1\ 1\ 0.7$	'84314 rg 1.8	BT/Qverlock
48	Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase. Scientific Reports, 2018, 8, 10849.	3.3	68
49	Influence of Sae-regulated and Agr-regulated factors on the escape of <i>Staphylococcus aureus </i> from human macrophages. Cellular Microbiology, 2016, 18, 1172-1183.	2.1	67
50	Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus. PLoS Genetics, 2018, 14, e1007514.	3.5	67
51	Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin. Journal of Dermatological Science, 2017, 87, 215-220.	1.9	65
52	Dermcidin-Derived Peptides Show a Different Mode of Action than the Cathelicidin LL-37 against <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 2499-2509.	3.2	61
53	\hat{l}^2 -Lactams Interfering with PBP1 Induce Panton-Valentine Leukocidin Expression by Triggering <i>sarA</i> and <i>rot</i> Global Regulators of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2011, 55, 3261-3271.	3.2	61
54	An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Scientific Reports, 2016, 6, 26455.	3.3	61

#	Article	IF	CITATIONS
55	strain designation by and polymorphism typing and delineation of diversification by sequence analysis. International Journal of Medical Microbiology, 2005, 295, 67-75.	3.6	58
56	Molecular Epidemiology of Communityâ€AcquiredStaphylococcus aureusin Families with and without Cystic Fibrosis Patients. Journal of Infectious Diseases, 2000, 181, 984-989.	4.0	57
57	The synthesis and function of the alarmone (p)ppGpp in firmicutes. International Journal of Medical Microbiology, 2010, 300, 142-147.	3.6	57
58	Transcription of the phage-encoded Panton–Valentine leukocidin of Staphylococcus aureus is dependent on the phage life-cycle and on the host background. Microbiology (United Kingdom), 2009, 155, 3491-3499.	1.8	51
59	Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ. Scientific Reports, 2018, 8, 2195.	3.3	51
60	Quantification of Bacterial Transcripts during Infection Using Competitive Reverse Transcription-PCR (RT-PCR) and LightCycler RT-PCR. Vaccine Journal, 2001, 8, 279-282.	2.6	50
61	High phenotypic diversity in infecting but not in colonizing <i>Staphylococcus aureus</i> populations. Environmental Microbiology, 2007, 9, 3134-3142.	3.8	49
62	Opposing effects of aminocoumarins and fluoroquinolones on the SOS response and adaptability in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2013, 68, 529-538.	3.0	48
63	Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism. Applied Microbiology and Biotechnology, 2015, 99, 9161-9176.	3.6	46
64	High-Level Fluorescence Labeling of Gram-Positive Pathogens. PLoS ONE, 2011, 6, e19822.	2.5	43
65	Temperate Phages of <i>Staphylococcus aureus</i> . Microbiology Spectrum, 2019, 7, .	3.0	43
66	A Point Mutation in the Sensor Histidine Kinase SaeS of <i>Staphylococcus aureus</i> Strain Newman Alters the Response to Biocide Exposure. Journal of Bacteriology, 2009, 191, 7306-7314.	2.2	40
67	Transcription Analysis of the Extracellular Adherence Protein fromStaphylococcus aureusin Authentic Human Infection and In Vitro. Journal of Infectious Diseases, 2009, 199, 1471-1478.	4.0	40
68	Evaluation of Intraspecies Interference Due toagrPolymorphism inStaphylococcus aureusduring Infection and Colonization. Journal of Infectious Diseases, 2003, 188, 250-256.	4.0	39
69	Structural Basis for Regulation of the Opposing (p)ppGpp Synthetase and Hydrolase within the Stringent Response Orchestrator Rel. Cell Reports, 2020, 32, 108157.	6.4	39
70	Regulation of Staphylococcus aureus Type 5 and Type 8 Capsular Polysaccharides by CO 2. Journal of Bacteriology, 2001, 183, 4609-4613.	2.2	35
71	Emergence of increasing linezolid-resistance in enterococci in a post-outbreak situation with vancomycin-resistantEnterococcus faecium. Epidemiology and Infection, 2008, 136, 1131-1133.	2.1	33
72	Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16. Applied and Environmental Microbiology, 2017, 83, .	3.1	33

#	Article	IF	Citations
73	Staphylococcus aureus Skin Colonization Is Enhanced by the Interaction of Neutrophil Extracellular Traps with Keratinocytes. Journal of Investigative Dermatology, 2020, 140, 1054-1065.e4.	0.7	32
74	Production of capsular polysaccharide does not influence Staphylococcus aureusvancomycin susceptibility. BMC Microbiology, 2013, 13, 65.	3.3	31
75	Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. International Journal of Medical Microbiology, 2019, 309, 151333.	3.6	31
76	<scp>rRNA</scp> regulation during growth and under stringent conditions in <scp><i>Scp><i>Sc i></i></i></scp> <i>taphylococcus aureus</i> . Environmental Microbiology, 2015, 17, 4394-4405.	3.8	30
77	Characterization of a <i>sar</i> Homolog of <i>Staphylococcus epidermidis</i> Infection and Immunity, 1998, 66, 2871-2878.	2.2	30
78	Discrimination between epidemic and non-epidemic glycopeptide-resistant E. faecium in a post-outbreak situation. Journal of Hospital Infection, 2007, 67, 49-55.	2.9	29
79	Staphylococcal superantigen-like genes, ssl5 and ssl8, are positively regulated by Sae and negatively by Agr in the Newman strain. FEMS Microbiology Letters, 2010, 308, no-no.	1.8	29
80	Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes, 2022, 13, 34.	2.4	29
81	Oxidative stress drives the selection of quorum sensing mutants in the <i>Staphylococcus aureus</i> population. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19145-19154.	7.1	28
82	Changing the phospholipid composition of <i>Staphylococcus aureus</i> causes distinct changes in membrane proteome and membraneâ€sensory regulators. Proteomics, 2010, 10, 1685-1693.	2.2	27
83	<i>Staphylococcus aureus</i> physiological growth limitations: Insights from flux calculations built on proteomics and external metabolite data. Proteomics, 2011, 11, 1915-1935.	2.2	27
84	The Catabolite Control Protein E (CcpE) Affects Virulence Determinant Production and Pathogenesis of Staphylococcus aureus. Journal of Biological Chemistry, 2014, 289, 29701-29711.	3.4	27
85	Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in <scp><i>S</i></scp> <i>taphylococcus aureus</i>	2.5	27
86	The alarmone (p)ppGpp confers tolerance to oxidative stress during the stationary phase by maintenance of redox and iron homeostasis in Staphylococcus aureus. Free Radical Biology and Medicine, 2020, 161, 351-364.	2.9	27
87	RpiRc Is a Pleiotropic Effector of Virulence Determinant Synthesis and Attenuates Pathogenicity in Staphylococcus aureus. Infection and Immunity, 2016, 84, 2031-2041.	2.2	26
88	The Role of hlb-Converting Bacteriophages in <i>Staphylococcus aureus</i> Host Adaption. Microbial Physiology, 2021, 31, 109-122.	2.4	26
89	Molecular basis of florfenicol-induced increase in adherence of Staphylococcus aureus strain Newman. Journal of Antimicrobial Chemotherapy, 2005, 56, 315-323.	3.0	25
90	The $5\hat{a} \in ^2$ NAD Cap of RNAIII Modulates Toxin Production in Staphylococcus aureus Isolates. Journal of Bacteriology, 2020, 202, .	2.2	25

#	Article	IF	Citations
91	Heterogeneity of Host TLR2 Stimulation by Staphylocoocus aureus Isolates. PLoS ONE, 2014, 9, e96416.	2.5	25
92	Expression of staphylococcal superantigens during nasal colonization is not sufficient to induce a systemic neutralizing antibody response in humans. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 251-256.	2.9	24
93	Methionine Biosynthesis in Staphylococcus aureus Is Tightly Controlled by a Hierarchical Network Involving an Initiator tRNA-Specific T-box Riboswitch. PLoS Pathogens, 2013, 9, e1003606.	4.7	23
94	Diversification of Clonal Complex 5 Methicillin-Resistant Staphylococcus aureus Strains (Rhine-Hesse) Tj ETQq0 0	0 rgBT /O\	verlock 10 T 23
95	Commercial Biocides Induce Transfer of Prophage \hat{l}_1^{\dagger} 13 from Human Strains of Staphylococcus aureus to Livestock CC398. Frontiers in Microbiology, 2017, 8, 2418.	3.5	23
96	Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. PLoS Genetics, 2020, 16, e1009282.	3.5	23
97	Altering gene expression by aminocoumarins: the role of DNA supercoiling in Staphylococcus aureus. BMC Genomics, 2014, 15, 291.	2.8	22
98	Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Research, 2017, 45, 5980-5994.	14.5	21
99	Interaction between Staphylococcus Agr virulence and neutrophils regulates pathogen expansion in the skin. Cell Host and Microbe, 2021, 29, 930-940.e4.	11.0	18
100	Revisiting the regulation of the capsular polysaccharide biosynthesis gene cluster in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2019, 112, 1083-1099.	2.5	17
101	Intracellular persistence of <i>Staphylococcus aureus</i> in endothelial cells is promoted by the absence of phenol-soluble modulins. Virulence, 2021, 12, 1186-1198.	4.4	17
102	Influence of clindamycin on the stability ofcoaandfnbBtranscripts and adherence properties ofStaphylococcus aureusNewman. FEMS Microbiology Letters, 2005, 252, 73-78.	1.8	16
103	A semi-quantitative model of Quorum-Sensing in Staphylococcus aureus, approved by microarray meta-analyses and tested by mutation studies. Molecular BioSystems, 2013, 9, 2665.	2.9	16
104	Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cellular and Molecular Life Sciences, 2020, 77, 3841-3858.	5.4	16
105	Transcriptional regulation of the novobiocin biosynthetic gene cluster. Microbiology (United) Tj ETQq1 1 0.78431	4.rgBT /O\	verlock 10 T
106	Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli. Journal of Bacteriology, 2018, 200, .	2.2	15
107	Insertion of host DNA into PVL-encoding phages of the Staphylococcus aureus lineage ST80 by intra-chromosomal recombination. Virology, 2010, 406, 322-327.	2.4	14
108	Bioluminescence imaging to study the promoter activity of hla of Staphylococcus aureus in vitro and in vivo. International Journal of Medical Microbiology, 2008, 298, 599-605.	3.6	11

#	Article	IF	CITATIONS
109	Adaptation of Staphylococcus aureus to the Human Skin Environment Identified Using an ex vivo Tissue Model. Frontiers in Microbiology, 2021, 12, 728989.	3.5	11
110	Resistance to dermcidin-derived peptides is independent of bacterial protease activity. International Journal of Antimicrobial Agents, 2009, 34, 86-90.	2.5	10
111	Small Alarmone Synthetases RelP and RelQ of Staphylococcus aureus Are Involved in Biofilm Formation and Maintenance Under Cell Wall Stress Conditions. Frontiers in Microbiology, 2020, 11, 575882.	3.5	10
112	SDS Interferes with SaeS Signaling of Staphylococcus aureus Independently of SaePQ. PLoS ONE, 2013, 8, e71644.	2.5	9
113	European external quality assessments for identification, molecular typing and characterization of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2018, 73, 2662-2666.	3.0	6
114	αâ€hemolysin of Staphylococcus aureus impairs thrombus formation. Journal of Thrombosis and Haemostasis, 2022, 20, 1464-1475.	3.8	5
115	The Staphylococcus epidermidis Transcriptional Profile During Carriage. Frontiers in Microbiology, 2022, 13, 896311.	3.5	5
116	Proteome Dynamics during Antibiotic Persistence and Resuscitation. MSystems, 2021, 6, e0054921.	3.8	4
117	The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Molecular Microbiology, 2007, 66, 278-278.	2.5	2
118	Temperate Phages of Staphylococcus aureus. , 2019, , 521-535.		2
119	Acquisition of antibiotic-resistant Enterococcus faecium strains during long-term hospitalization and fast adaptation of enterococcal flora to antibiotic treatment: A case report. International Journal of Hygiene and Environmental Health, 2009, 212, 105-108.	4.3	1
120	Modeling of stringent-response reflects nutrient stress induced growth impairment and essential amino acids in different Staphylococcus aureus mutants. Scientific Reports, 2021, 11, 9651.	3.3	1
121	Reply to Mimica. Clinical Infectious Diseases, 2012, 54, 1518-1519.	5.8	O