Nikunj Satani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9052208/publications.pdf

Version: 2024-02-01

516710 610901 2,420 29 16 24 citations h-index g-index papers 34 34 34 5317 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Enhancing Stroke Recovery With Cellular Therapies. , 2022, , 900-911.e5.		O
2	Aurora kinase inhibition sensitizes melanoma cells to T-cell-mediated cytotoxicity. Cancer Immunology, Immunotherapy, 2021, 70, 1101-1113.	4.2	18
3	A metaâ€analysis of the global impact of the COVIDâ€19 pandemic on stroke care & the Houston Experience. Annals of Clinical and Translational Neurology, 2021, 8, 929-937.	3.7	16
4	Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells, 2021, 10, 767.	4.1	25
5	A Combination of Atorvastatin and Aspirin Enhances the Pro-Regenerative Interactions of Marrow Stromal Cells and Stroke-Derived Monocytes In Vitro. Frontiers in Pharmacology, 2021, 12, 589418.	3.5	3
6	Homozygous MTAP deletion in primary human glioblastoma is not associated with elevation of methylthioadenosine. Nature Communications, 2021, 12, 4228.	12.8	21
7	Medications for Hypertension Change the Secretome Profile from Marrow Stromal Cells and Peripheral Blood Monocytes. Stem Cells International, 2020, 2020, 1-28.	2.5	3
8	An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nature Metabolism, 2020, 2, 1413-1426.	11.9	49
9	The 3S Enantiomer Drives Enolase Inhibitory Activity in SF2312 and Its Analogues. Molecules, 2019, 24, 2510.	3.8	10
10	Stem Cells as an Emerging Paradigm in Stroke 4. Stroke, 2019, 50, 3299-3306.	2.0	68
11	Aspirin in stroke patients modifies the immunomodulatory interactions of marrow stromal cells and monocytes. Brain Research, 2019, 1720, 146298.	2.2	10
12	World-Wide Efficacy of Bone Marrow Derived Mesenchymal Stromal Cells in Preclinical Ischemic Stroke Models: Systematic Review and Meta-Analysis. Frontiers in Neurology, 2019, 10, 405.	2.4	29
13	Ongoing Secondary Degeneration of the Limbic System in Patients With Ischemic Stroke: A Longitudinal MRI Study. Frontiers in Neurology, 2019, 10, 154.	2.4	35
14	The Effect of Topoisomerase I Inhibitors on the Efficacy of T-Cell-Based Cancer Immunotherapy. Journal of the National Cancer Institute, 2018, 110, 777-786.	6.3	58
15	Protective Effects of Autologous Bone Marrow Mononuclear Cells After Administering t-PA in an Embolic Stroke Model. Translational Stroke Research, 2018, 9, 135-145.	4.2	26
16	Abstract 2831: Collateral lethality: A new target for personalized oncology. , 2018, , .		0
17	Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature, 2017, 542, 119-123.	27.8	209
18	HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nature Communications, 2017, 8, 451.	12.8	107

#	Article	IF	CITATIONS
19	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	16.8	1,282
20	Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants. Cytotherapy, 2017, 19, 36-46.	0.7	11
21	Cryopreservation of Bone Marrow Mononuclear Cells Alters Their Viability and Subpopulation Composition but Not Their Treatment Effects in a Rodent Stroke Model. Stem Cells International, 2016, 2016, 1-7.	2.5	11
22	ENOblock Does Not Inhibit the Activity of the Glycolytic Enzyme Enolase. PLoS ONE, 2016, 11, e0168739.	2.5	34
23	SF2312 is a natural phosphonate inhibitor of enolase. Nature Chemical Biology, 2016, 12, 1053-1058.	8.0	90
24	Is Immunomodulation a Principal Mechanism Underlying How Cell-Based Therapies Enhance Stroke Recovery?. Neurotherapeutics, 2016, 13, 775-782.	4.4	23
25	Abstract 3837: Passenger deletion of ENO1 as a collateral lethality target in cancer. , 2016, , .		0
26	Abstract 4242: Rhodamine esters as fluorescent tumor painting agents for glioblastoma. , 2016, , .		0
27	MTR-19A MACROPHAGE-/MICROGLIAL-RICH TUMOR MICROENVIRONMENT MIMICS PRONEURAL TO MESENCHYMAL TRANSITION IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v128.3-v128.	1.2	0
28	Development of novel combinations of targeted and immunotherapies by understanding immune resistance using a high throughput assay of T cell mediated cytotoxicity. , 2013, 1, .		0
29	The intricate mechanisms of neurodegeneration in prion diseases. Trends in Molecular Medicine, 2011, 17, 14-24.	6.7	119