Yoshiaki Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051707/publications.pdf

Version: 2024-02-01

74 papers

2,524 citations

28 h-index 197818 49 g-index

74 all docs 74 docs citations

times ranked

74

2120 citing authors

#	Article	IF	CITATIONS
1	Cationic ring-opening polymerization of a five membered cyclic dithiocarbonate having a tertiary amine moiety. Polymer Chemistry, 2022, 13, 267-274.	3.9	12
2	Synthesis of poly(hydroxyurethane) from 5â€membered cyclic carbonate under mild conditions in the presence of bicyclic guanidine and their reaction process. Journal of Polymer Science, 2021, 59, 502-509.	3.8	6
3	Synthesis and fundamental properties of methacrylate polymer containing <scp>fiveâ€membered</scp> cyclic trithiocarbonate group. Journal of Polymer Science, 2020, 58, 2126-2133.	3.8	3
4	Phosgene-free and Chemoselective Synthesis of Novel Polyureas from Activated <scp>l</scp> -Lysine with Diphenyl Carbonate. Macromolecules, 2020, 53, 6809-6815.	4.8	9
5	Well-Defined Construction of Functional Macromolecular Architectures Based on Polymerization of Amino Acid Urethanes. Biomedicines, 2020, 8, 317.	3.2	3
6	Reprocessable Aliphatic Polydithiourethanes Based on the Reversible Addition Reaction of Diisothiocyanates and Dithiols. Macromolecules, 2019, 52, 6080-6087.	4.8	11
7	Synthesis and decrosslinking of networked polymers having zwitterion structure consisted by cyclic amidine and isothiocyanate. Journal of Polymer Science Part A, 2019, 57, 2131-2137.	2.3	O
8	Synthesis of polymethacrylateâ€bearing benzocyclobutene structure and extension to networked polymer based on thermal isomerization. Journal of Polymer Science Part A, 2019, 57, 2175-2180.	2.3	1
9	Proposed Mechanism for the High-Yield Polymerization of Oxyethyl Propiolates with Rh Complex Catalyst Using the Density Functional Theory Method. Polymers, 2019, 11, 93.	4.5	6
10	Synthesis and physical properties of poly(urethane)s using vicinal diols derived from acrylate and styrene monomers. Journal of Polymer Science Part A, 2019, 57, 799-805.	2.3	2
11	Methoxy-Group Control of Helical Pitch in Stereoregular Poly(2-ethynylmethoxynaphthalene) Prepared by Rhodium Complex Catalyst. Polymers, 2019, 11, 94.	4.5	2
12	Synthesis of polydithiourethanes and their thermal, optical, and mechanical properties originated from monomers structure. Journal of Polymer Science Part A, 2018, 56, 2255-2262.	2.3	2
13	Selective formation of a zwitterion adduct and bicarbonate salt in the efficient CO ₂ fixation by <i>N</i> -benzyl cyclic guanidine under dry and wet conditions. Beilstein Journal of Organic Chemistry, 2018, 14, 2204-2211.	2.2	3
14	Surface Modification with a Catechol-Bearing Polypeptide and Sensing Applications. Biomacromolecules, 2018, 19, 3067-3076.	5.4	15
15	CO2 capture capacity of five- and six-membered cyclic amidines bearing silatranyl group under dry conditions. Tetrahedron, 2017, 73, 1529-1533.	1.9	10
16	Color change of alternating copolymers with phenyl vinylethylene carbonate and N-phenylmaleimide in a solution and in the solid-state, depending on their structure. RSC Advances, 2017, 7, 9373-9380.	3.6	5
17	Synthesis of five- and six-membered cyclic guanidines by guanylation with isothiouronium iodides and amines under mild conditions. Synthetic Communications, 2017, 47, 442-448.	2.1	8
18	An immunoelectrochemical platform for the biosensing of  Cocaine use'. Sensors and Actuators B: Chemical, 2017, 246, 310-318.	7.8	23

#	Article	IF	Citations
19	Strictly Alternating Sequences When Copolymerizing Racemic and Chiral Acetylene Monomers with an Organo-Rhodium Catalyst. Macromolecules, 2017, 50, 1291-1301.	4.8	2
20	Synthesis and solidâ€state properties of crosslinked alternating copolymers of phenyl vinylethylene carbonate and <i>N</i> àâ€substituted maleimides. Journal of Applied Polymer Science, 2017, 134, 45247.	2.6	7
21	Substituent dependence of imidazoline derivatives on the capture and release system of carbon dioxide. New Journal of Chemistry, 2017, 41, 14390-14396.	2.8	5
22	Phosgeneâ€Free Synthesis of Poly(<scp>l</scp> â€cysteine) Containing Styrene Moiety as a Reactive Function. Macromolecular Chemistry and Physics, 2017, 218, 1700078.	2,2	10
23	Preparation of a zwitterionic polymer based on <scp>I</scp> -cysteine for recovery application of precious metals. RSC Advances, 2016, 6, 108689-108696.	3.6	28
24	Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing. Analytical Chemistry, 2016, 88, 4161-4167.	6.5	91
25	Synthesis and thermal properties of vinyl copolymers with phenyl vinylethylene carbonate and N-substituted maleimides undergoing color change with acidâ€"base switching. Polymer Chemistry, 2016, 7, 6770-6778.	3.9	15
26	Polypeptide with electroactive endgroups as sensing platform for the abused drug †methamphetamine†by bioelectrochemical method. Talanta, 2016, 161, 789-796.	5.5	46
27	Radical polymerization behavior and thermal properties of vinyl ethylene carbonate derivatives bearing aromatic moieties. Polymer, 2016, 102, 167-175.	3.8	16
28	Synthesis and characterization of polyurethanes bearing carbosilane segments. RSC Advances, 2016, 6, 94803-94808.	3.6	1
29	Synthesis and application of a novel poly-l-phenylalanine electroactive macromonomer as matrix for the biosensing of †Abused Drug' model. Polymer Chemistry, 2016, 7, 7304-7315.	3.9	14
30	Complex Structured Fluorescent Polythiophene Graft Copolymer as a Versatile Tool for Imaging, Targeted Delivery of Paclitaxel, and Radiotherapy. Biomacromolecules, 2016, 17, 2399-2408.	5.4	17
31	Synthesis of thiourethanes and poly(thiourethane)s bearing carboxylic groups by nucleophilic acylation using cyclic acid anhydrides. Polymer Bulletin, 2016, 73, 1627-1637.	3.3	2
32	Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. Macromolecular Chemistry and Physics, 2015, 216, 1868-1878.	2,2	28
33	Synthesis and properties of polyhydroxyurethane bearing silicone backbone. Journal of Polymer Science Part A, 2014, 52, 1113-1118.	2.3	48
34	Mutual conversion between stretched and contracted helices accompanied by a drastic change in color and spatial structure of poly(phenylacetylene) prepared with a [Rh(nbd)Cl] ₂ -amine catalyst. Journal of Polymer Science Part A, 2014, 52, 752-759.	2.3	32
35	Reversible fixation and release of carbon dioxide with a binary system consisting of polyethylene glycol and polystyreneâ€bearing cyclic amidine pendant group. Journal of Polymer Science Part A, 2014, 52, 2025-2031.	2.3	13
36	Structural determination of stretched helix and contracted helix having yellow and red colors of poly(2-ethynylnaphthalene) prepared with a [Rh(norbornadiene)Cl]2-triethylamine catalyst. Polymer, 2014, 55, 2356-2361.	3.8	35

#	Article	IF	CITATIONS
37	Synthesis and solid state helix to helix rearrangement of poly(phenylacetylene) bearing n-octyl alkyl side chains. Polymer Chemistry, 2014, 5, 971-978.	3.9	38
38	Electrochemical deposition of polypeptides: bio-based covering materials for surface design. Polymer Chemistry, 2014, 5, 3929-3936.	3.9	45
39	Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polymer Chemistry, 2014, 5, 6295-6306.	3.9	52
40	Effective synthesis of cyclic carbonates from carbon dioxide and epoxides by phosphonium iodides as catalysts in alcoholic solvents. Tetrahedron Letters, 2013, 54, 7031-7034.	1.4	73
41	Helix oscillation of polyacetylene esters detected by dynamic 1H NMR, IR, and UV-vis methods in solution. Polymer Chemistry, 2013, 4, 2982.	3.9	24
42	Convenient synthesis of cyclic carbonates from CO ₂ and epoxides by simple secondary and primary ammonium iodides as metalâ€free catalysts under mild conditions and its application to synthesis of polymer bearing cyclic carbonate moiety. Journal of Polymer Science Part A, 2013, 51, 1230-1242.	2.3	71
43	Fast equilibrium of zwitterionic adduct formation in reversible fixation–release system of CO2 by amidines under dry conditions. Tetrahedron, 2013, 69, 5476-5480.	1.9	19
44	Phosgeneâ€free synthesis of polypeptides: Useful synthesis for hydrophobic polypeptides through polycondensation of activated urethane derivatives of αâ€amino acids. Journal of Polymer Science Part A, 2013, 51, 3726-3731.	2.3	37
45	Accordion-like Oscillation of Contracted and Stretched Helices of Polyacetylenes Synchronized with the Restricted Rotation of Side Chains. Journal of the American Chemical Society, 2013, 135, 4110-4116.	13.7	76
46	Contracted helix to stretched helix Rearrangement of an aromatic polyacetylene prepared in <i>n</i> -hexane with [Rh(norbornadiene)Cl] ₂ -triethylamine catalyst. Journal of Polymer Science Part A, 2013, 51, 5177-5183.	2.3	27
47	Capture and release of CO ₂ by polyamidine. Journal of Polymer Science Part A, 2013, 51, 3404-3411.	2.3	24
48	Remarkably Efficient Catalysts of Amidine Hydroiodides for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides under Mild Conditions. Chemistry Letters, 2012, 41, 240-241.	1.3	35
49	Useful synthetic method of polypeptides with wellâ€defined structure by polymerization of activated urethane derivatives of αâ€amino acids. Journal of Polymer Science Part A, 2012, 50, 2527-2532.	2.3	37
50	Irreversible helix rearrangement from <i>Cisâ€transoid</i> to <i>Cisâ€cisoid</i> in poly(<i>p</i> â€xi>nâ€hexyloxyphenylacetylene) induced by heatâ€treatment in solid phase. Journal of Polymer Science Part A, 2012, 50, 3008-3015.	2.3	48
51	Synthesis of a norbornene monomer having cyclic carbonate moiety based on CO ₂ fixation and its transition metalâ€catalyzed polymerizations. Journal of Polymer Science Part A, 2010, 48, 3896-3902.	2.3	18
52	Amidine-mediated delivery of CO ₂ from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chemistry, 2010, 12, 42-44.	9.0	80
53	Reversible Trapâ^'Release of CO ₂ by Polymers Bearing DBU and DBN Moieties. Macromolecules, 2008, 41, 1229-1236.	4.8	93
54	Computational evaluation of radical ring-opening polymerization. Journal of Polymer Science Part A, 2007, 45, 2827-2834.	2.3	19

#	Article	IF	CITATIONS
55	Living cationic ringâ€opening polymerization of fiveâ€membered cyclic dithiocarbonate controlled by neighboring group participation of carbamate group. Journal of Polymer Science Part A, 2007, 45, 4459-4464.	2.3	9
56	Radical polymerization behavior of a vinyl monomer bearing five-membered cyclic carbonate structure and reactions of the obtained polymers with amines. Journal of Polymer Science Part A, 2005, 43, 584-592.	2.3	28
57	Efficient Chemical Recycling System of Networked Polymer:Â De-Cross-Linking of Cross-Linked Polymer Obtained from Bis(five-membered cyclic dithiocarbonate). Macromolecules, 2005, 38, 4065-4066.	4.8	20
58	Facile synthesis and crosslinking reaction of trifunctional five-membered cyclic carbonate and dithiocarbonate. Journal of Polymer Science Part A, 2004, 42, 5983-5989.	2.3	34
59	Star-Shaped Polymer Synthesis by Anionic Polymerization of Propylene Sulfide Based on Trifunctional Initiator Derived from Trifunctional Five-Membered Cyclic Dithiocarbonate. Macromolecules, 2004, 37, 8823-8824.	4.8	29
60	A Novel Construction of a Reversible Fixationâ^'Release System of Carbon Dioxide by Amidines and Their Polymers. Macromolecules, 2004, 37, 2007-2009.	4.8	95
61	Cationic Ring-Opening Polymerization of Cyclic Monothiocarbonates:Â Varying the Polymer Main Chain by Neighboring Group Participation. Macromolecules, 2001, 34, 7642-7647.	4.8	14
62	Radical ring-opening polymerization. Journal of Polymer Science Part A, 2001, 39, 265-276.	2.3	115
63	A novel one-pot oxidation polymerization of dithiols obtained from bifunctional five-membered cyclic dithiocarbonates with amines. Journal of Polymer Science Part A, 1998, 36, 79-84.	2.3	27
64	A Novel Construction of Living Polymerization by Neighboring Group Participation:Â Living Cationic Ring-Opening Polymerization of a Five-Membered Cyclic Dithiocarbonate. Macromolecules, 1998, 31, 9093-9095.	4.8	42
65	Dependence of Ring-Opening Reaction of Five-Membered Dithiocarbonates on Cationic Catalyst:Â Control of Isomerization and Polymerization. Macromolecules, 1998, 31, 2454-2460.	4.8	47
66	Cationic isomerization and ring-opening polymerization of a five-membered dithiocarbonate: The first example for control of isomerization and polymerization. Journal of Polymer Science Part A, 1997, 35, 3853-3856.	2.3	23
67	Polycondensation of ο-hydroxy carboxylic acid derived fromL-phenylalanine and ethylene carbonate. Journal of Polymer Science Part A, 1996, 34, 1819-1822.	2.3	17
68	Radical Ring-Opening Polymerization Behavior of Halogenated Phenyl-3-vinyloxiranes. Polymer Journal, 1995, 27, 757-761.	2.7	4
69	Synthesis and reaction of polymers bearing 5-membered cyclic dithiocarbonate group. Journal of Polymer Science Part A, 1995, 33, 1005-1010.	2.3	37
70	Preparation of 1,3-Oxathiolane-2-thiones by the Reaction of Oxirane and Carbon Disulfide. Journal of Organic Chemistry, 1995, 60, 473-475.	3.2	106
71	Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. Journal of Organic Chemistry, 1993, 58, 6198-6202.	3.2	425
72	Synthesis and reaction of polymethacrylate bearing cyclic carbonate moieties in the side chain. Die Makromolekulare Chemie, 1992, 193, 1481-1492.	1.1	75

YOSHIAKI YOSHIDA

#	Article	lF	CITATIONS
73	Syntheses of 2-phenyl-3-vinyloxirane derivatives that undergo radical ring-opening polymerization. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 1931-1938.	0.8	28
74	Curing behavior and properties of epoxy monomers with ethylenediaminetetraacetic dianhydride. Journal of Applied Polymer Science, 0, , 51626.	2.6	2