Guang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051516/publications.pdf Version: 2024-02-01

CHANC CHEN

#	Article	IF	CITATIONS
1	Molecular Evolution of Plant 14-3-3 Proteins and Function of Hv14-3-3A in Stomatal Regulation and Drought Tolerance. Plant and Cell Physiology, 2023, 63, 1857-1872.	3.1	15
2	Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. Plant and Cell Physiology, 2023, 63, 1787-1805.	3.1	10
3	Molecular response and evolution of plant anion transport systems to abiotic stress. Plant Molecular Biology, 2022, 110, 397-412.	3.9	12
4	SMXLs regulate seed germination under salinity and drought stress in soybean. Plant Growth Regulation, 2022, 96, 397-408.	3.4	10
5	Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends in Plant Science, 2022, 27, 890-907.	8.8	27
6	Stomatal regulation and adaptation to salinity in glycophytes and halophytes. Advances in Botanical Research, 2022, , .	1.1	0
7	Evolutionary and Regulatory Pattern Analysis of Soybean Ca2+ ATPases for Abiotic Stress Tolerance. Frontiers in Plant Science, 2022, 13, .	3.6	6
8	Metalloid hazards: From plant molecular evolution to mitigation strategies. Journal of Hazardous Materials, 2021, 409, 124495.	12.4	29
9	Evolution of rapid blueâ€kight response linked to explosive diversification of ferns in angiosperm forests. New Phytologist, 2021, 230, 1201-1213.	7.3	33
10	Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. Frontiers in Plant Science, 2021, 12, 665842.	3.6	17
11	Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. International Journal of Molecular Sciences, 2021, 22, 12308.	4.1	28
12	The energy cost of the tonoplast futile sodium leak. New Phytologist, 2020, 225, 1105-1110.	7.3	86
13	Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological / ultrastructural adjustments. Ecotoxicology and Environmental Safety, 2020, 190, 110076.	6.0	39
14	Evolution of Abscisic Acid Signaling for Stress Responses to Toxic Metals and Metalloids. Frontiers in Plant Science, 2020, 11, 909.	3.6	68
15	GORK Channel: A Master Switch of Plant Metabolism?. Trends in Plant Science, 2020, 25, 434-445.	8.8	73
16	Root plasticity and Pi recycling within plants contribute to low-P tolerance in Tibetan wild barley. BMC Plant Biology, 2019, 19, 341.	3.6	23
17	A Nckâ€associated protein 1â€like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. Plant Journal, 2019, 98, 884-897.	5.7	19
18	Transcriptomic analysis reveals adaptive strategies to chronic low nitrogen in Tibetan wild barley. BMC Plant Biology, 2019, 19, 68.	3.6	22

GUANG CHEN

#	Article	IF	CITATIONS
19	Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5015-5020.	7.1	138
20	Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Frontiers in Genetics, 2019, 10, 956.	2.3	21
21	Leaf epidermis transcriptome reveals drought-Induced hormonal signaling for stomatal regulation in wild barley. Plant Growth Regulation, 2019, 87, 39-54.	3.4	29
22	Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5223-5228.	7.1	64
23	Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC Plant Biology, 2018, 18, 187.	3.6	47
24	Transcriptomic comparison of two barley genotypes differing in arsenic tolerance exposed to arsenate and phosphate treatments. Plant Physiology and Biochemistry, 2018, 130, 589-603.	5.8	14
25	QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genomics, 2017, 18, 9.	2.8	108
26	Evolutionary Conservation of ABA Signaling for Stomatal Closure. Plant Physiology, 2017, 174, 732-747.	4.8	158
27	Molecular Evolution of Grass Stomata. Trends in Plant Science, 2017, 22, 124-139.	8.8	202
28	Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance. Frontiers in Plant Science, 2017, 8, 621.	3.6	211
29	Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. BMC Plant Biology, 2016, 16, 30.	3.6	104
30	Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley. Frontiers in Plant Science, 2014, 5, 634.	3.6	49