## **Olivier Pourquie**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90515/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis. Cell, 1997, 91, 639-648.                    | 28.9 | 880       |
| 2  | FGF Signaling Controls Somite Boundary Position and Regulates Segmentation Clock Control of Spatiotemporal Hox Gene Activation. Cell, 2001, 106, 219-232. | 28.9 | 628       |
| 3  | Making muscle: skeletal myogenesis <i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 2017, 144, 2104-2122.                                    | 2.5  | 577       |
| 4  | The Segmentation Clock: Converting Embryonic Time into Spatial Pattern. Science, 2003, 301, 328-330.                                                      | 12.6 | 487       |
| 5  | A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock. Science, 2006, 314, 1595-1598.                                   | 12.6 | 418       |
| 6  | Control of segment number in vertebrate embryos. Nature, 2008, 454, 335-339.                                                                              | 27.8 | 398       |
| 7  | Maintenance of neuroepithelial progenitor cells by Delta–Notch signalling in the embryonic chick<br>retina. Current Biology, 1997, 7, 661-670.            | 3.9  | 394       |
| 8  | Lateral and Axial Signals Involved in Avian Somite Patterning: A Role for BMP4. Cell, 1996, 84, 461-471.                                                  | 28.9 | 390       |
| 9  | fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature, 2004, 427, 419-422.                  | 27.8 | 380       |
| 10 | Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy.<br>Nature Biotechnology, 2015, 33, 962-969.               | 17.5 | 339       |
| 11 | Segmental patterning of the vertebrate embryonic axis. Nature Reviews Genetics, 2008, 9, 370-382.                                                         | 16.3 | 331       |
| 12 | Signalling dynamics in vertebrate segmentation. Nature Reviews Molecular Cell Biology, 2014, 15, 709-721.                                                 | 37.0 | 317       |
| 13 | Vertebrate Segmentation: From Cyclic Gene Networks to Scoliosis. Cell, 2011, 145, 650-663.                                                                | 28.9 | 306       |
| 14 | A random cell motility gradient downstream of FGF controls elongation of an amniote embryo.<br>Nature, 2010, 466, 248-252.                                | 27.8 | 289       |
| 15 | A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nature Cell<br>Biology, 2008, 10, 186-193.                       | 10.3 | 286       |
| 16 | The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Current Biology, 1998, 8, 979-982.             | 3.9  | 247       |
| 17 | Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos. Nature, 2005, 435, 215-220                                       | 27.8 | 239       |
| 18 | Vertebrate Somitogenesis. Annual Review of Cell and Developmental Biology, 2001, 17, 311-350.                                                             | 9.4  | 234       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro.<br>Nature Protocols, 2016, 11, 1833-1850.                                                                            | 12.0 | 215       |
| 20 | Signaling Gradients during Paraxial Mesoderm Development. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000869-a000869.                                                                                             | 5.5  | 205       |
| 21 | Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature, 2006, 442, 568-571.                                                                                                   | 27.8 | 196       |
| 22 | Coupling segmentation to axis formation. Development (Cambridge), 2004, 131, 5783-5793.                                                                                                                                     | 2.5  | 183       |
| 23 | New protease inhibitors prevent Î <sup>3</sup> -secretase-mediated production of AÎ <sup>2</sup> 40/42 without affecting Notch cleavage. Nature Cell Biology, 2001, 3, 507-511.                                             | 10.3 | 181       |
| 24 | Evolutionary plasticity of segmentation clock networks. Development (Cambridge), 2011, 138, 2783-2792.                                                                                                                      | 2.5  | 166       |
| 25 | Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11343-11348.                             | 7.1  | 165       |
| 26 | Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. Journal of Theoretical Biology, 2008, 252, 574-585.                                                      | 1.7  | 162       |
| 27 | FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development (Cambridge), 2007, 134, 4033-4041.                                       | 2.5  | 161       |
| 28 | Changes in Hox genes' structure and function during the evolution of the squamate body plan.<br>Nature, 2010, 464, 99-103.                                                                                                  | 27.8 | 160       |
| 29 | A Gradient of Glycolytic Activity Coordinates FGF and Wnt Signaling during Elongation of the Body<br>Axis in Amniote Embryos. Developmental Cell, 2017, 40, 342-353.e10.                                                    | 7.0  | 156       |
| 30 | In vitro characterization of the human segmentation clock. Nature, 2020, 580, 113-118.                                                                                                                                      | 27.8 | 152       |
| 31 | Abnormal vertebral segmentation and the notch signaling pathway in man. Developmental Dynamics, 2007, 236, 1456-1474.                                                                                                       | 1.8  | 143       |
| 32 | Oscillating Expression of c-Hey2 in the Presomitic Mesoderm Suggests That the Segmentation Clock<br>May Use Combinatorial Signaling through Multiple Interacting bHLH Factors. Developmental Biology,<br>2000, 227, 91-103. | 2.0  | 139       |
| 33 | Oscillations of the Snail Genes in the Presomitic Mesoderm Coordinate Segmental Patterning and<br>Morphogenesis in Vertebrate Somitogenesis. Developmental Cell, 2006, 10, 355-366.                                         | 7.0  | 138       |
| 34 | Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mechanisms of Development, 1996, 60, 13-32.                  | 1.7  | 136       |
| 35 | Formation and Segmentation of the Vertebrate Body Axis. Annual Review of Cell and Developmental<br>Biology, 2013, 29, 1-26.                                                                                                 | 9.4  | 133       |
| 36 | Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Developmental Dynamics, 2007, 236, 1495-1508.                                                      | 1.8  | 126       |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Excitable Dynamics and Yap-Dependent Mechanical Cues Drive the Segmentation Clock. Cell, 2017, 171, 668-682.e11.                                                                         | 28.9 | 117       |
| 38 | <i>Hox</i> genes in time and space during vertebrate body formation. Development Growth and Differentiation, 2007, 49, 265-275.                                                          | 1.5  | 115       |
| 39 | Oscillating signaling pathways during embryonic development. Current Opinion in Cell Biology, 2008, 20, 632-637.                                                                         | 5.4  | 106       |
| 40 | Hox genes control vertebrate body elongation by collinear Wnt repression. ELife, 2015, 4, .                                                                                              | 6.0  | 106       |
| 41 | Rere controls retinoic acid signalling and somite bilateral symmetry. Nature, 2010, 463, 953-957.                                                                                        | 27.8 | 103       |
| 42 | A Nomenclature for Prospective Somites and Phases of Cyclic Gene Expression in the Presomitic Mesoderm. Developmental Cell, 2001, 1, 619-620.                                            | 7.0  | 101       |
| 43 | Axon fasciculation defects and retinal dysplasias in mice lacking the immunoglobulin superfamily adhesion molecule BEN/ALCAM/SC1. Molecular and Cellular Neurosciences, 2004, 27, 59-69. | 2.2  | 100       |
| 44 | Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature, 2020, 584,<br>98-101.                                                                                 | 27.8 | 95        |
| 45 | SarcTrack. Circulation Research, 2019, 124, 1172-1183.                                                                                                                                   | 4.5  | 94        |
| 46 | A clock-work somite. BioEssays, 2000, 22, 72-83.                                                                                                                                         | 2.5  | 92        |
| 47 | Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Human Molecular Genetics, 2009, 18, 1110-1121.                                | 2.9  | 92        |
| 48 | The chick embryo: a leading model in somitogenesis studies. Mechanisms of Development, 2004, 121, 1069-1079.                                                                             | 1.7  | 89        |
| 49 | Uncoupling segmentation and somitogenesis in the chick presomitic mesoderm. , 1998, 23, 77-85.                                                                                           |      | 87        |
| 50 | BEN As a Presumptive Target Recognition Molecule during the Development of the Olivocerebellar System. Journal of Neuroscience, 1996, 16, 3296-3310.                                     | 3.6  | 86        |
| 51 | Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact.<br>International Journal of Developmental Biology, 2005, 49, 309-315.                     | 0.6  | 86        |
| 52 | <i>In Situ</i> Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries.<br>ACS Applied Bio Materials, 2020, 3, 1568-1579.                                  | 4.6  | 86        |
| 53 | Developmental control of segment numbers in vertebrates. Journal of Experimental Zoology Part B:<br>Molecular and Developmental Evolution, 2009, 312B, 533-544.                          | 1.3  | 80        |
| 54 | Chapter 7 Establishment of Hox Vertebral Identities in the Embryonic Spine Precursors. Current Topics in Developmental Biology, 2009, 88, 201-234.                                       | 2.2  | 80        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Mutations in the MESP2 Gene Cause Spondylothoracic Dysostosis/Jarcho-Levin Syndrome. American<br>Journal of Human Genetics, 2008, 82, 1334-1341.                                                     | 6.2  | 79        |
| 56 | Dual mode of paraxial mesoderm formation during chick gastrulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2744-2749.                           | 7.1  | 70        |
| 57 | Progress in the Understanding of the Genetic Etiology of Vertebral Segmentation Disorders in<br>Humans. Annals of the New York Academy of Sciences, 2009, 1151, 38-67.                               | 3.8  | 70        |
| 58 | A relative shift in cloacal location repositions external genitalia in amniote evolution. Nature, 2014,<br>516, 391-394.                                                                             | 27.8 | 70        |
| 59 | Somitogenesis: segmenting a vertebrate. Current Opinion in Genetics and Development, 1998, 8, 487-493.                                                                                               | 3.3  | 68        |
| 60 | Notch around the clock. Current Opinion in Genetics and Development, 1999, 9, 559-565.                                                                                                               | 3.3  | 66        |
| 61 | A molecular clock involved in Somite segmentation. Current Topics in Developmental Biology, 2001, 51, 221-248.                                                                                       | 2.2  | 66        |
| 62 | Mechanical Coupling Coordinates the Co-elongation of Axial and Paraxial Tissues in Avian Embryos.<br>Developmental Cell, 2020, 55, 354-366.e5.                                                       | 7.0  | 65        |
| 63 | Somite formation and patterning. International Review of Cytology, 2000, 198, 1-65.                                                                                                                  | 6.2  | 61        |
| 64 | GENETICS: Chicken GenomeScience Nuggets to Come Soon. Science, 2003, 300, 1669-1669.                                                                                                                 | 12.6 | 61        |
| 65 | Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos. BMC Genomics, 2010, 11, 13.                                                     | 2.8  | 61        |
| 66 | Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4884-93. | 7.1  | 60        |
| 67 | Multiscale quantification of tissue behavior during amniote embryo axis elongation. Development<br>(Cambridge), 2017, 144, 4462-4472.                                                                | 2.5  | 60        |
| 68 | The Lin28/let-7 Pathway Regulates the Mammalian Caudal Body Axis Elongation Program.<br>Developmental Cell, 2019, 48, 396-405.e3.                                                                    | 7.0  | 60        |
| 69 | Expression of Genes (CAPN3, SGCA, SGCB, and TTN) Involved in Progressive Muscular Dystrophies<br>during Early Human Development. Genomics, 1998, 48, 145-156.                                        | 2.9  | 59        |
| 70 | The vertebrate segmentation clock: the tip of the iceberg. Current Opinion in Genetics and Development, 2008, 18, 317-323.                                                                           | 3.3  | 59        |
| 71 | From head to tail: links between the segmentation clock and antero-posterior patterning of the embryo. Current Opinion in Genetics and Development, 2002, 12, 519-523.                               | 3.3  | 56        |
| 72 | Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm<br><i>in vitro</i> . Development (Cambridge), 2018, 145, .                                             | 2.5  | 53        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering. Advanced Materials, 2022,<br>34, e2105883.                                                                                                            | 21.0 | 53        |
| 74 | Vertebrate somitogenesis: a novel paradigm for animal segmentation?. International Journal of Developmental Biology, 2003, 47, 597-603.                                                                                          | 0.6  | 53        |
| 75 | The vertebrate segmentation clock. Journal of Anatomy, 2001, 199, 169-175.                                                                                                                                                       | 1.5  | 51        |
| 76 | Timed Collinear Activation of Hox Genes during Gastrulation Controls the Avian Forelimb Position.<br>Current Biology, 2019, 29, 35-50.e4.                                                                                        | 3.9  | 50        |
| 77 | 3 Segmentation of the Paraxial Mesoderm and Vertebrate Somitogenesis. Current Topics in<br>Developmental Biology, 1999, 47, 81-105.                                                                                              | 2.2  | 48        |
| 78 | Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development<br>(Cambridge), 2010, 137, 373-387.                                                                                               | 2.5  | 47        |
| 79 | Synthesis of new 3-alkoxy-7-amino-4-chloro-isocoumarin derivatives as new β-amyloid peptide production inhibitors and their activities on various classes of protease. Bioorganic and Medicinal Chemistry, 2003, 11, 3141-3152.  | 3.0  | 44        |
| 80 | Mechanics of Anteroposterior Axis Formation in Vertebrates. Annual Review of Cell and Developmental Biology, 2019, 35, 259-283.                                                                                                  | 9.4  | 43        |
| 81 | Exploring the Influence of Cell Metabolism on Cell Fate through Protein Post-translational<br>Modifications. Developmental Cell, 2020, 54, 282-292.                                                                              | 7.0  | 42        |
| 82 | Comparison of Pattern Detection Methods in Microarray Time Series of the Segmentation Clock. PLoS ONE, 2008, 3, e2856.                                                                                                           | 2.5  | 38        |
| 83 | Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4224-4229.               | 7.1  | 37        |
| 84 | Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage <i>in vitro</i> .<br>Development (Cambridge), 2020, 147, .                                                                                 | 2.5  | 37        |
| 85 | In vivo analysis of mRNA stability using the Tet-Off system in the chicken embryo. Developmental<br>Biology, 2005, 284, 292-300.                                                                                                 | 2.0  | 35        |
| 86 | Bioelectrical domain walls in homogeneous tissues. Nature Physics, 2020, 16, 357-364.                                                                                                                                            | 16.7 | 35        |
| 87 | Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem<br>cell–derived skeletal muscle in vitro. Proceedings of the National Academy of Sciences of the United<br>States of America, 2021, 118, . | 7.1  | 32        |
| 88 | Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. ELife, 2021, 10, .                                                                                               | 6.0  | 31        |
| 89 | On periodicity and directionality of somitogenesis. Anatomy and Embryology, 2006, 211, 3-8.                                                                                                                                      | 1.5  | 30        |
| 90 | BEN, a novel surface molecule of the immunoglobulin superfamily on avian hemopoietic progenitor cells shared with neural cells. Experimental Cell Research, 1992, 203, 91-99.                                                    | 2.6  | 29        |

| #   | Article                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Clocks regulating developmental processes. Current Opinion in Neurobiology, 1998, 8, 665-670.                                                                       | 4.2  | 28        |
| 92  | Skin development: Delta laid bare. Current Biology, 2000, 10, R425-R428.                                                                                            | 3.9  | 27        |
| 93  | <i>PAPC</i> couples the segmentation clock to somite morphogenesis by regulating N-cadherin dependent adhesion. Development (Cambridge), 2017, 144, 664-676.        | 2.5  | 27        |
| 94  | The WHHERE coactivator complex is required for retinoic acid-dependent regulation of embryonic symmetry. Nature Communications, 2017, 8, 728.                       | 12.8 | 27        |
| 95  | Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genetics, 2021, 17, e1009812.            | 3.5  | 27        |
| 96  | Paraxial mesoderm organoids model development of human somites. ELife, 2022, 11, .                                                                                  | 6.0  | 27        |
| 97  | Segmentation clock: insights from computational models. Current Biology, 2003, 13, R632-R634.                                                                       | 3.9  | 26        |
| 98  | An antigen expressed by avian neuronal cells is also expressed by activated T lymphocytes. Cellular<br>Immunology, 1992, 141, 99-110.                               | 3.0  | 25        |
| 99  | Chapter 13 Manipulation and Electroporation of the Avian Segmental Plate and Somites In Vitro.<br>Methods in Cell Biology, 2008, 87, 257-270.                       | 1.1  | 25        |
| 100 | Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic<br>diseases. Nucleic Acids Research, 2014, 42, D882-D891.       | 14.5 | 25        |
| 101 | The Long Road to Making Muscle In Vitro. Current Topics in Developmental Biology, 2018, 129, 123-142.                                                               | 2.2  | 24        |
| 102 | A new canon. Nature, 2005, 433, 208-209.                                                                                                                            | 27.8 | 20        |
| 103 | Retinoic acid. Current Biology, 2008, 18, R191-R192.                                                                                                                | 3.9  | 20        |
| 104 | Somite formation in the chicken embryo. International Journal of Developmental Biology, 2018, 62, 57-62.                                                            | 0.6  | 20        |
| 105 | A macho way to make muscles. Nature, 2001, 409, 679-680.                                                                                                            | 27.8 | 17        |
| 106 | Cyclic <i>Nrarp</i> mRNA expression is regulated by the somitic oscillator but Nrarp protein levels do not oscillate. Developmental Dynamics, 2009, 238, 3043-3055. | 1.8  | 16        |
| 107 | Integrative Data Mining Highlights Candidate Genes for Monogenic Myopathies. PLoS ONE, 2014, 9, e110888.                                                            | 2.5  | 16        |
| 108 | Vertebrate segmentation: is cycling the rule?. Current Opinion in Cell Biology, 2000, 12, 747-751.                                                                  | 5.4  | 15        |

| #   | Article                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | In vitro systems: A new window to the segmentation clock. Development Growth and Differentiation, 2021, 63, 140-153.                                                                    | 1.5  | 15        |
| 110 | Chicken genome: New tools and concepts. Developmental Dynamics, 2005, 232, 883-886.                                                                                                     | 1.8  | 14        |
| 111 | Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections. Science Advances, 2021, 7, eabi8787.                   | 10.3 | 14        |
| 112 | Rectified random cell motility as a mechanism for embryo elongation. Development (Cambridge), 2022, 149, .                                                                              | 2.5  | 14        |
| 113 | A brief history of the segmentation clock. Developmental Biology, 2022, 485, 24-36.                                                                                                     | 2.0  | 14        |
| 114 | Expression of DM-GRASP/BEN in the developing mouse spinal cord and various epithelia. Mechanisms of Development, 2000, 95, 221-224.                                                     | 1.7  | 13        |
| 115 | Welcome to Syndetome. Developmental Cell, 2003, 4, 611-612.                                                                                                                             | 7.0  | 13        |
| 116 | Looking inwards: opening a window onto human development. Development (Cambridge), 2015, 142, 1-2.                                                                                      | 2.5  | 13        |
| 117 | Identification in the Chicken of GRL1 and GRL2: Two Granule Proteins Expressed on the Surface of Activated Leukocytes. Experimental Cell Research, 1993, 204, 156-166.                  | 2.6  | 11        |
| 118 | Human muscle production in vitro from pluripotent stem cells: Basic and clinical applications.<br>Seminars in Cell and Developmental Biology, 2021, 119, 39-48.                         | 5.0  | 9         |
| 119 | Future developments: your thoughts and our plans. Development (Cambridge), 2016, 143, 1-2.                                                                                              | 2.5  | 8         |
| 120 | The times they are a-changin'. Development (Cambridge), 2017, 144, 1-2.                                                                                                                 | 2.5  | 7         |
| 121 | Chapter 1 Cell migrations and establishment of neuronal connections in the developing brain: a study using the quail-chick chimera system. Progress in Brain Research, 1994, 100, 3-18. | 1.4  | 6         |
| 122 | Metabolic decisions in development and disease—a Keystone Symposia report. Annals of the New York<br>Academy of Sciences, 2021, 1506, 55-73.                                            | 3.8  | 6         |
| 123 | Making the Clock Tick: Right Time, Right Pace. Developmental Cell, 2013, 24, 115-116.                                                                                                   | 7.0  | 5         |
| 124 | Vertebrate Segmentation: Lunatic Transcriptional Regulation. Current Biology, 2002, 12, R699-R701.                                                                                      | 3.9  | 4         |
| 125 | More Than Patterning—Hox Genes and the Control of Posterior Axial Elongation. Developmental Cell,<br>2009, 17, 439-440.                                                                 | 7.0  | 4         |
| 126 | BEN/DM-GRASP/SC1 expression during mouse facial development: differential expression and regulation in molars and incisors. Gene Expression Patterns, 2003, 3, 255-259.                 | 0.8  | 3         |

| #   | Article                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Reprogramming development. Development (Cambridge), 2013, 140, 1-2.                                                       | 2.5 | 3         |
| 128 | Stem cells and regeneration: a special issue. Development (Cambridge), 2013, 140, 2445-2445.                              | 2.5 | 3         |
| 129 | Developing peer review. Development (Cambridge), 2015, 142, 1389-1389.                                                    | 2.5 | 3         |
| 130 | Introducing cross-referee commenting in peer review. Development (Cambridge), 2016, 143, 3035-3036.                       | 2.5 | 3         |
| 131 | Ce n'est qu'un au revoir. Development (Cambridge), 2018, 145, .                                                           | 2.5 | 3         |
| 132 | The Node: a place to discuss, debate and deliberate developmental biology. Development (Cambridge), 2010, 137, 2251-2251. | 2.5 | 2         |
| 133 | Steering a changing course. Development (Cambridge), 2011, 138, 1-2.                                                      | 2.5 | 2         |
| 134 | <i>Development</i> : looking to the future. Development (Cambridge), 2012, 139, 1893-1894.                                | 2.5 | 2         |
| 135 | The San Francisco Declaration on Research Assessment. Development (Cambridge), 2013, 140, 2643-2644.                      | 2.5 | 2         |
| 136 | Human development: a Special Issue. Development (Cambridge), 2015, 142, 3071-3072.                                        | 2.5 | 2         |
| 137 | Introducing preLights: preprint highlights, selected by the biological community. Development (Cambridge), 2018, 145, .   | 2.5 | 2         |
| 138 | Advocating developmental biology. Development (Cambridge), 2018, 145, .                                                   | 2.5 | 2         |
| 139 | Developmental Biology: Cell Intercalation One Step beyond. Current Biology, 2008, 18, R119-R121.                          | 3.9 | 1         |
| 140 | Ethical development. Development (Cambridge), 2014, 141, 3439-3440.                                                       | 2.5 | 1         |
| 141 | Developing a new look. Development (Cambridge), 2015, 142, 3803-3804.                                                     | 2.5 | 1         |
| 142 | And one last thing. Development (Cambridge), 2018, 145, .                                                                 | 2.5 | 1         |
| 143 | Editorial on Segmentation Focus. Developmental Dynamics, 2007, 236, 1377-1378.                                            | 1.8 | 0         |
| 144 | Pattern formation and developmental mechanisms. Current Opinion in Genetics and Development, 2008, 18, 285-286.           | 3.3 | 0         |

9

| #   | Article                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Developing with the community. Development (Cambridge), 2014, 141, 3-4.                        | 2.5  | 0         |
| 146 | Managing patterns and proportions over time. Science, 2014, 345, 1565-1566.                    | 12.6 | 0         |
| 147 | Standing Up for Sticklebacks. Cell, 2016, 164, 9-10.                                           | 28.9 | 0         |
| 148 | Going format-free. Development (Cambridge), 2017, 144, 1919-1919.                              | 2.5  | 0         |
| 149 | Human development: recent progress and future prospects. Development (Cambridge), 2018, 145, . | 2.5  | 0         |
| 150 | Editorial changes. Development (Cambridge), 2017, , .                                          | 2.5  | 0         |