Narisara Chantratita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-evolutionary Signals Identify <i>Burkholderia pseudomallei</i> Survival Strategies in a Hostile Environment. Molecular Biology and Evolution, 2022, 39, .	8.9	10
2	Burkholderia pseudomallei pathogenesis in human skin fibroblasts: A Bsa type III secretion system is involved in the invasion, multinucleated giant cell formation, and cellular damage. PLoS ONE, 2022, 17, e0261961.	2.5	4
3	Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. Journal of Immunology Research, 2022, 2022, 1-15.	2.2	21
4	Miniaturised broth microdilution for simplified antibiotic susceptibility testing of Gram negative clinical isolates using microcapillary devices. Analyst, The, 2022, 147, 3558-3569.	3.5	5
5	False Positivity of Anti-SARS-CoV-2 Antibodies in Patients with Acute Tropical Diseases in Thailand. Tropical Medicine and Infectious Disease, 2022, 7, 132.	2.3	10
6	A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis. Clinical Infectious Diseases, 2021, 72, 821-828.	5.8	5
7	Insight into Molecular Epidemiology, Antimicrobial Resistance, and Virulence Genes of Extensively Drug-Resistant Acinetobacter baumannii in Thailand. Microbial Drug Resistance, 2021, 27, 350-359.	2.0	12
8	Blood transcriptomics to characterize key biological pathways and identify biomarkers for predicting mortality in melioidosis. Emerging Microbes and Infections, 2021, 10, 8-18.	6.5	10
9	Detection and differentiation of Burkholderia species with pathogenic potential in environmental soil samples. PLoS ONE, 2021, 16, e0245175.	2.5	4
10	Role of <i>Burkholderia pseudomallei</i> –Specific IgG2 in Adults with Acute Melioidosis, Thailand. Emerging Infectious Diseases, 2021, 27, 463-470.	4.3	13
11	Antibiotic Susceptibility of Clinical Burkholderia pseudomallei Isolates in Northeast Thailand from 2015 to 2018 and the Genomic Characterization of <i>β</i> -Lactam-Resistant Isolates. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	9
12	Rapid Clinical Screening of Burkholderia pseudomallei Colonies by a Bacteriophage Tail Fiber-Based Latex Agglutination Assay. Applied and Environmental Microbiology, 2021, 87, e0301920.	3.1	7
13	Melioidosis Patient Survival Correlates With Strong IFN-Î ³ Secreting T Cell Responses Against Hcp1 and TssM. Frontiers in Immunology, 2021, 12, 698303.	4.8	10
14	Longitudinal analysis to characterize classes and subclasses of antibody responses to recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients in Thailand. PLoS ONE, 2021, 16, e0255796.	2.5	3
15	Tetraspanins are involved in Burkholderia pseudomallei-induced cell-to-cell fusion of phagocytic and non-phagocytic cells. Scientific Reports, 2020, 10, 17972.	3.3	7
16	Melioidosis DS rapid test: A standardized serological dipstick assay with increased sensitivity and reliability due to multiplex detection. PLoS Neglected Tropical Diseases, 2020, 14, e0008452.	3.0	12
17	Lactoferrin is a dynamic protein in human melioidosis and is a TLR4-dependent driver of TNF-α release in Burkholderia thailandensis infection in vitro. PLoS Neglected Tropical Diseases, 2020, 14, e0008495.	3.0	2
18	Serum From Melioidosis Survivors Diminished Intracellular Burkholderia pseudomallei Growth in Macrophages: A Brief Research Report. Frontiers in Cellular and Infection Microbiology, 2020, 10, 442.	3.9	11

NARISARA CHANTRATITA

#	Article	IF	CITATIONS
19	In vitro passage alters virulence, immune activation and proteomic profiles of Burkholderia pseudomallei. Scientific Reports, 2020, 10, 8320.	3.3	10
20	Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS ONE, 2020, 15, e0234129.	2.5	14
21	Adapting Microarray Gene Expression Signatures for Early Melioidosis Diagnosis. Journal of Clinical Microbiology, 2020, 58, .	3.9	6
22	Human Immune Responses to Melioidosis and Cross-Reactivity to Low-Virulence <i>Burkholderia</i> Species, Thailand1. Emerging Infectious Diseases, 2020, 26, 463-471.	4.3	15
23	Genomic loss in environmental and isogenic morphotype isolates of Burkholderia pseudomallei is associated with intracellular survival and plaque-forming efficiency. PLoS Neglected Tropical Diseases, 2020, 14, e0008590.	3.0	4
24	Essential Gene Clusters Involved in Copper Tolerance Identified in Acinetobacter baumannii Clinical and Environmental Isolates. Pathogens, 2020, 9, 60.	2.8	19
25	<i>Staphylococcus argenteus</i> from rabbits in Thailand. MicrobiologyOpen, 2019, 8, e00665.	3.0	20
26	Melioidosis patient serum-reactive synthetic tetrasaccharides bearing the predominant epitopes of <i>Burkholderia pseudomallei</i> and <i>Burkholderia mallei</i> O-antigens. Organic and Biomolecular Chemistry, 2019, 17, 8878-8901.	2.8	13
27	Distinct classes and subclasses of antibodies to hemolysin co-regulated protein 1 and O-polysaccharide and correlation with clinical characteristics of melioidosis patients. Scientific Reports, 2019, 9, 13972.	3.3	17
28	Flagellin-independent effects of a Toll-like receptor 5 polymorphism in the inflammatory response to Burkholderia pseudomallei. PLoS Neglected Tropical Diseases, 2019, 13, e0007354.	3.0	7
29	Cyclo(tetrahydroxybutyrate) production is sufficient to distinguish between Xenorhabdus and Photorhabdus isolates in Thailand. Environmental Microbiology, 2019, 21, 2921-2932.	3.8	1
30	Prevalence and genetic diversity of Burkholderia pseudomallei isolates in the environment near a patient's residence in Northeast Thailand. PLoS Neglected Tropical Diseases, 2019, 13, e0007348.	3.0	16
31	<i>Staphylococcus</i> spp. associated with subclinical bovine mastitis in central and northeast provinces of Thailand. PeerJ, 2019, 7, e6587.	2.0	31
32	Exonic sequencing identifies TLR1 genetic variation associated with mortality in Thais with melioidosis. Emerging Microbes and Infections, 2019, 8, 282-290.	6.5	3
33	Predictive Validity of the qSOFA Score for Sepsis in Adults with Community-Onset Staphylococcal Infection in Thailand. Journal of Clinical Medicine, 2019, 8, 1908.	2.4	3
34	Burkholderia pseudomallei acquired ceftazidime resistance due to gene duplication and amplification. International Journal of Antimicrobial Agents, 2019, 53, 582-588.	2.5	16
35	Lipopolysaccharides from Different <i>Burkholderia</i> Species with Different Lipid A Structures Induce Toll-Like Receptor 4 Activation and React with Melioidosis Patient Sera. Infection and Immunity, 2019, 87, .	2.2	11
36	Dissemination of <i>bla</i> _{OXA-23} , <i>bla</i> _{OXA-24} , <i>bla</i> _{OXA-58} , and <i>bla</i> _{NDM-1} Genes of <i>Acinetobacter baumannii</i> lsolates from Four Tertiary Hospitals in Thailand. Microbial Drug Resistance, 2018, 24, 55-62.	2.0	17

#	Article	IF	CITATIONS
37	Molecular Characteristics of Methicillin-Resistant Staphylococci Clinical Isolates from a Tertiary Hospital in Northern Thailand. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018, 2018, 1-7.	1.9	14
38	Melioidosis in Thailand: Present and Future. Tropical Medicine and Infectious Disease, 2018, 3, 38.	2.3	58
39	Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Scientific Reports, 2018, 8, 9167.	3.3	18
40	Immune response to recombinant Burkholderia pseudomallei FliC. PLoS ONE, 2018, 13, e0198906.	2.5	23
41	A Rapid Immunochromatography Test Based on Hcp1 Is a Potential Point-of-Care Test for Serological Diagnosis of Melioidosis. Journal of Clinical Microbiology, 2018, 56, .	3.9	34
42	Comprehensive analysis of clinical Burkholderia pseudomallei isolates demonstrates conservation of unique lipid A structure and TLR4-dependent innate immune activation. PLoS Neglected Tropical Diseases, 2018, 12, e0006287.	3.0	14
43	Presence of B. thailandensis and B. thailandensis expressing B. pseudomallei-like capsular polysaccharide in Thailand, and their associations with serological response to B. pseudomallei. PLoS Neglected Tropical Diseases, 2018, 12, e0006193.	3.0	22
44	Use of Rapid Enzyme-Linked Immunosorbent Assays for Serological Screening of Melioidosis in Myanmar. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1300-1302.	1.4	8
45	Retrospective Analysis of Fever and Sepsis Patients from Cambodia Reveals Serological Evidence of Melioidosis. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1039-1045.	1.4	7
46	Antibodies in Melioidosis: The Role of the Indirect Hemagglutination Assay in Evaluating Patients and Exposed Populations. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1378-1385.	1.4	33
47	Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome Medicine, 2017, 9, 6.	8.2	61
48	Patient Characteristics, Management, and Predictors of Outcome from Severe Community-Onset Staphylococcal Sepsis in Northeast Thailand: A Prospective Multicenter Study. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0606.	1.4	7
49	Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nature Communications, 2017, 8, 115.	12.8	42
50	Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand. Genome Medicine, 2017, 9, 81.	8.2	73
51	Effects of sodium chloride on heat resistance, oxidative susceptibility, motility, biofilm and plaque formation of <i>Burkholderia pseudomallei</i> . MicrobiologyOpen, 2017, 6, e00493.	3.0	13
52	Evolution of the <i>Staphylococcus argenteus</i> ST2250 Clone in Northeastern Thailand Is Linked with the Acquisition of Livestock-Associated Staphylococcal Genes. MBio, 2017, 8, .	4.1	44
53	Burkholderia pseudomallei Evades Nramp1 (Slc11a1)- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression. Frontiers in Cellular and Infection Microbiology, 2017, 7, 350.	3.9	5
54	Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species. PLoS ONE, 2017, 12, e0175294.	2.5	36

#	Article	IF	CITATIONS
55	Elevated C-reactive protein, interleukin 6, tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais: a cross-sectional study. BMC Endocrine Disorders, 2017, 17, 44.	2.2	61
56	Photorhabdus luminescens subsp. namnaonensis subsp. nov., isolated from Heterorhabditis baujardi nematodes. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1046-1051.	1.7	24
57	Comparison of O-polysaccharide and hemolysin co-regulated protein as target antigens for serodiagnosis of melioidosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005499.	3.0	46
58	A nonsense mutation in TLR5 is associated with survival and reduced IL-10 and TNF-α levels in human melioidosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005587.	3.0	16
59	Susceptibility of Clinical Isolates of Burkholderia pseudomallei to a Lipid A Biosynthesis Inhibitor. American Journal of Tropical Medicine and Hygiene, 2017, 97, 62-67.	1.4	12
60	Development of Rapid Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Burkholderia pseudomallei. Journal of Clinical Microbiology, 2016, 54, 1259-1268.	3.9	55
61	Burkholderia pseudomallei induces IL-23 production in primary human monocytes. Medical Microbiology and Immunology, 2016, 205, 255-260.	4.8	9
62	Validation of a monoclonal antibody-based immunofluorescent assay to detect <i>Burkholderia pseudomallei</i> in blood cultures. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 670-672.	1.8	8
63	Using Rapid Diagnostic Tests as a Source of Viral RNA for Dengue Serotyping by RT-PCR - A Novel Epidemiological Tool. PLoS Neglected Tropical Diseases, 2016, 10, e0004704.	3.0	12
64	Analyses of the Distribution Patterns of Burkholderia pseudomallei and Associated Phages in Soil Samples in Thailand Suggest That Phage Presence Reduces the Frequency of Bacterial Isolation. PLoS Neglected Tropical Diseases, 2016, 10, e0005005.	3.0	21
65	Trimethoprim/sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei from Thailand. International Journal of Antimicrobial Agents, 2015, 45, 557-559.	2.5	24
66	Colony Morphology Variation of Burkholderia pseudomallei Is Associated with Antigenic Variation and O-Polysaccharide Modification. Infection and Immunity, 2015, 83, 2127-2138.	2.2	28
67	Competition between Burkholderia pseudomallei and B. thailandensis. BMC Microbiology, 2015, 15, 56.	3.3	32
68	Evaluation of Polysaccharide-Based Latex Agglutination Assays for the Rapid Detection of Antibodies to Burkholderia pseudomallei. American Journal of Tropical Medicine and Hygiene, 2015, 93, 542-546.	1.4	29
69	T-Cell Responses Are Associated with Survival in Acute Melioidosis Patients. PLoS Neglected Tropical Diseases, 2015, 9, e0004152.	3.0	69
70	Melioidosis Caused by <i>Burkholderia pseudomallei</i> in Drinking Water, Thailand, 2012. Emerging Infectious Diseases, 2014, 20, 265-268.	4.3	63
71	NLRC4 and TLR5 Each Contribute to Host Defense in Respiratory Melioidosis. PLoS Neglected Tropical Diseases, 2014, 8, e3178.	3.0	27
72	Development of a Prototype Lateral Flow Immunoassay (LFI) for the Rapid Diagnosis of Melioidosis. PLoS Neglected Tropical Diseases, 2014, 8, e2727.	3.0	93

NARISARA CHANTRATITA

#	Article	IF	CITATIONS
73	Trimethoprim-sulfamethoxazole versus trimethoprim-sulfamethoxazole plus doxycycline as oral eradicative treatment for melioidosis (MERTH): a multicentre, double-blind, non-inferiority, randomised controlled trial. Lancet, The, 2014, 383, 807-814.	13.7	118
74	The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei. BMC Microbiology, 2014, 14, 1.	3.3	180
75	Microevolution of Burkholderia pseudomallei during an Acute Infection. Journal of Clinical Microbiology, 2014, 52, 3418-3421.	3.9	30
76	Evaluation of a Latex Agglutination Assay for the Identification of Burkholderia pseudomallei and Burkholderia mallei. American Journal of Tropical Medicine and Hygiene, 2014, 90, 1043-1046.	1.4	54
77	Common TLR1 Genetic Variation Is Not Associated with Death from Melioidosis, a Common Cause of Sepsis in Rural Thailand. PLoS ONE, 2014, 9, e83285.	2.5	4
78	Impaired TLR5 Functionality Is Associated with Survival in Melioidosis. Journal of Immunology, 2013, 190, 3373-3379.	0.8	41
79	Monoclonal Antibody-Based Immunofluorescence Microscopy for the Rapid Identification of Burkholderia pseudomallei in Clinical Specimens. American Journal of Tropical Medicine and Hygiene, 2013, 89, 165-168.	1.4	29
80	Rapid Detection of Burkholderia pseudomallei in Blood Cultures Using a Monoclonal Antibody-Based Immunofluorescent Assay. American Journal of Tropical Medicine and Hygiene, 2013, 89, 971-972.	1.4	21
81	Survey of Innate Immune Responses to Burkholderia pseudomallei in Human Blood Identifies a Central Role for Lipopolysaccharide. PLoS ONE, 2013, 8, e81617.	2.5	30
82	The Genetic and Molecular Basis of O-Antigenic Diversity in Burkholderia pseudomallei Lipopolysaccharide. PLoS Neglected Tropical Diseases, 2012, 6, e1453.	3.0	69
83	Proteomic analysis of colony morphology variants of Burkholderia pseudomallei defines a role for the arginine deiminase system in bacterial survival. Journal of Proteomics, 2012, 75, 1031-1042.	2.4	31
84	Diversity of Xenorhabdus and Photorhabdus spp. and Their Symbiotic Entomopathogenic Nematodes from Thailand. PLoS ONE, 2012, 7, e43835.	2.5	60
85	Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in <i>Burkholderia pseudomallei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17165-17170.	7.1	98
86	Survival of Burkholderia pseudomallei in distilled water for 16 years. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, 105, 598-600.	1.8	71
87	Survey of Antimicrobial Resistance in Clinical Burkholderia pseudomallei Isolates over Two Decades in Northeast Thailand. Antimicrobial Agents and Chemotherapy, 2011, 55, 5388-5391.	3.2	76
88	The Cluster 1 Type VI Secretion System Is a Major Virulence Determinant in <i>Burkholderia pseudomallei</i> . Infection and Immunity, 2011, 79, 1512-1525.	2.2	258
89	Enzyme-Linked Immunosorbent Assay for the Diagnosis of Melioidosis: Better Than We Thought. Clinical Infectious Diseases, 2011, 52, 1024-1028.	5.8	26
90	Evolution of MRSA During Hospital Transmission and Intercontinental Spread. Science, 2010, 327, 469-474.	12.6	1,054

#	Article	IF	CITATIONS
91	Effect of colony morphology variation of Burkholderia pseudomallei on intracellular survival and resistance to antimicrobial environments in human macrophages in vitro. BMC Microbiology, 2010, 10, 303.	3.3	39
92	Defining the True Sensitivity of Culture for the Diagnosis of Melioidosis Using Bayesian Latent Class Models. PLoS ONE, 2010, 5, e12485.	2.5	136
93	Burkholderia pseudomallei Is Spatially Distributed in Soil in Northeast Thailand. PLoS Neglected Tropical Diseases, 2010, 4, e694.	3.0	47
94	Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates. Genome Biology, 2010, 11, R89.	9.6	70
95	Burkholderia pseudomallei Is Genetically Diverse in Agricultural Land in Northeast Thailand. PLoS Neglected Tropical Diseases, 2009, 3, e496.	3.0	35
96	Loop-Mediated Isothermal Amplification Method Targeting the TTS1 Gene Cluster for Detection of <i>Burkholderia pseudomallei</i> and Diagnosis of Melioidosis. Journal of Clinical Microbiology, 2008, 46, 568-573.	3.9	61
97	Genetic Diversity and Microevolution of Burkholderia pseudomallei in the Environment. PLoS Neglected Tropical Diseases, 2008, 2, e182.	3.0	51
98	A Simple Scoring System to Differentiate between Relapse and Re-Infection in Patients with Recurrent Melioidosis. PLoS Neglected Tropical Diseases, 2008, 2, e327.	3.0	27
99	Accuracy of Enzyme-Linked Immunosorbent Assay Using Crude and Purified Antigens for Serodiagnosis of Melioidosis. Vaccine Journal, 2007, 14, 110-113.	3.1	45
100	Biological Relevance of Colony Morphology and Phenotypic Switching by Burkholderia pseudomallei. Journal of Bacteriology, 2007, 189, 807-817.	2.2	124
101	Toll-Like Receptor 2 Impairs Host Defense in Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis). PLoS Medicine, 2007, 4, e248.	8.4	128
102	Prospective Clinical Evaluation of the Accuracy of 16S rRNA Real-Time PCR Assay for the Diagnosis of Melioidosis. American Journal of Tropical Medicine and Hygiene, 2007, 77, 814-817.	1.4	34
103	Prospective clinical evaluation of the accuracy of 16S rRNA real-time PCR assay for the diagnosis of melioidosis. American Journal of Tropical Medicine and Hygiene, 2007, 77, 814-7.	1.4	17
104	PULSED-FIELD GEL ELECTROPHORESIS AS A DISCRIMINATORY TYPING TECHNIQUE FOR THE BIOTHREAT AGENT BURKHOLDERIA MALLEI. American Journal of Tropical Medicine and Hygiene, 2006, 74, 345-347.	1.4	16
105	Pulsed-field gel electrophoresis as a discriminatory typing technique for the biothreat agent burkholderia mallei. American Journal of Tropical Medicine and Hygiene, 2006, 74, 345-7.	1.4	6
106	Recurrent Melioidosis in Patients in Northeast Thailand Is Frequently Due to Reinfection Rather than Relapse. Journal of Clinical Microbiology, 2005, 43, 6032-6034.	3.9	82