Emily S Minor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9051209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graph models of habitat mosaics. Ecology Letters, 2009, 12, 260-273.	6.4	467
2	A Graphâ€Theory Framework for Evaluating Landscape Connectivity and Conservation Planning. Conservation Biology, 2008, 22, 297-307.	4.7	369
3	The city as a refuge for insect pollinators. Conservation Biology, 2017, 31, 24-29.	4.7	368
4	GRAPH THEORY AS A PROXY FOR SPATIALLY EXPLICIT POPULATION MODELS IN CONSERVATION PLANNING. Ecological Applications, 2007, 17, 1771-1782.	3.8	242
5	Urban residents' perceptions of birds in the neighborhood: Biodiversity, cultural ecosystem services, and disservices. Condor, 2015, 117, 192-202.	1.6	131
6	Having our yards and sharing them too: the collective effects of yards on native bird species in an urban landscape. Ecological Applications, 2014, 24, 2132-2143.	3.8	119
7	Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosystems, 2015, 18, 857-870.	2.4	116
8	Diversity of wild bees supports pollination services in an urbanized landscape. Oecologia, 2015, 179, 811-821.	2.0	115
9	Humans, bees, and pollination services in the city: the case of Chicago, IL (USA). Biodiversity and Conservation, 2014, 23, 2857-2874.	2.6	102
10	Vacant lots: An underexplored resource for ecological and social benefits in cities. Urban Forestry and Urban Greening, 2017, 21, 146-152.	5.3	100
11	A Multiscale Network Analysis of Protectedâ€Area Connectivity for Mammals in the United States. Conservation Biology, 2010, 24, 1549-1558.	4.7	84
12	Exploring the effects of green infrastructure placement on neighborhood-level flooding via spatially explicit simulations. Computers, Environment and Urban Systems, 2016, 59, 116-128.	7.1	79
13	The role of landscape connectivity in assembling exotic plant communities: a network analysis. Ecology, 2009, 90, 1802-1809.	3.2	70
14	Evaluating the dependence of urban pollinators on ornamental, non-native, and â€ [~] weedy' floral resources. Urban Ecosystems, 2019, 22, 293-302.	2.4	66
15	Global urban environmental change drives adaptation in white clover. Science, 2022, 375, 1275-1281.	12.6	62
16	Combined vegetation volume and "greenness―affect urban air temperature. Applied Geography, 2016, 71, 106-114.	3.7	52
17	Different social drivers, including perceptions of urban wildlife, explain the ecological resources in residential landscapes. Landscape Ecology, 2016, 31, 401-413.	4.2	49
18	Forest bird communities across a gradient of urban development. Urban Ecosystems, 2010, 13, 51-71.	2.4	48

EMILY S MINOR

#	Article	IF	CITATIONS
19	Yards increase forest connectivity in urban landscapes. Landscape Ecology, 2019, 34, 2935-2948.	4.2	47
20	Enhancing pollination supply in an urban ecosystem through landscape modifications. Landscape and Urban Planning, 2017, 162, 157-166.	7.5	45
21	Landscape connectivity and seed dispersal characteristics inform the best management strategy for exotic plants. , 2011, 21, 739-749.		42
22	Greening in style: Urban form, architecture and the structure of front and backyard vegetation. Landscape and Urban Planning, 2019, 185, 141-157.	7.5	41
23	Green infrastructure and bird diversity across an urban socioeconomic gradient. Ecosphere, 2012, 3, 1-18.	2.2	40
24	Diversity in flowering plants and their characteristics: integrating humans as a driver of urban floral resources. Urban Ecosystems, 2016, 19, 1735-1748.	2.4	35
25	Substitutable habitats? The biophysical and anthropogenic drivers of an exotic bird's distribution. Biological Invasions, 2014, 16, 415-427.	2.4	32
26	Restored connectivity facilitates recruitment by an endemic largeâ€seeded tree in a fragmented tropical landscape. Ecology, 2016, 97, 2511-2517.	3.2	32
27	Pathology to Enhance Precision Medicine in Oncology. Advances in Anatomic Pathology, 2015, 22, 267-272.	4.3	30
28	Adolescents' Experience and Knowledge of, and Attitudes toward, Bees: Implications and Recommendations for Conservation. Anthrozoos, 2017, 30, 19-32.	1.4	30
29	Assessing social and biophysical drivers of spontaneous plant diversity and structure in urban vacant lots. Science of the Total Environment, 2019, 653, 1272-1281.	8.0	29
30	Birds suppress pests in corn but release them in soybean crops within a mixed prairie/agriculture system. Condor, 2020, 122, duaa009.	1.6	29
31	Forest mammal roadkills as related to habitat connectivity in protected areas. Biodiversity and Conservation, 2016, 25, 2673-2686.	2.6	27
32	Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris). Canadian Journal of Forest Research, 2010, 40, 1410-1420.	1.7	26
33	Predicting and Mapping Potential Whooping Crane Stopover Habitat to Guide Site Selection for Wind Energy Projects. Conservation Biology, 2014, 28, 541-550.	4.7	26
34	Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea. Acta Oecologica, 2016, 71, 31-38.	1.1	20
35	Insights into human-wildlife interactions in cities from bird sightings recorded online. Landscape and Urban Planning, 2020, 196, 103742.	7.5	19
36	Urban parakeets in Northern Illinois: A 40-year perspective. Urban Ecosystems, 2012, 15, 709-719.	2.4	18

EMILY S MINOR

#	Article	IF	CITATIONS
37	Distribution of exotic monk parakeets across an urban landscape. Urban Ecosystems, 2012, 15, 979-991.	2.4	13
38	Using faecal metabarcoding to examine consumption of crop pests and beneficial arthropods in communities of generalist avian insectivores. Ibis, 2022, 164, 27-43.	1.9	13
39	Herbivores and natural enemies of brassica crops in urban agriculture. Urban Ecosystems, 2018, 21, 519-529.	2.4	12
40	Histoecology: Applying Ecological Principles and Approaches to Describe and Predict Tumor Ecosystem Dynamics Across Space and Time. Cancer Control, 2020, 27, 107327482094680.	1.8	9
41	Covariation between local and landscape factors influences the structure of ground-active arthropod communities in fragmented metropolitan woodlands. Landscape Ecology, 2018, 33, 225-239.	4.2	8
42	Chicago's Urban Cemeteries as Habitat for Cavity-Nesting Birds. Sustainability, 2019, 11, 3258.	3.2	8
43	Changes in Land Use and Land Cover Along an Urban-Rural Gradient Influence Floral Resource Availability. Current Landscape Ecology Reports, 2021, 6, 46-70.	2.2	8
44	Assessing four methods for establishing native plants on urban vacant land. Ambio, 2021, 50, 695-705.	5.5	7
45	Incorporating Risk of Reinvasion to Prioritize Sites for Invasive Species Management. Natural Areas Journal, 2014, 34, 268-281.	0.5	6
46	Spatial contagion structures urban vegetation from parcel to landscape. People and Nature, 2022, 4, 88-102.	3.7	6
47	Connectivity in the Urban Landscape (2015–2020): Who? Where? What? When? Why? and How?. Current Landscape Ecology Reports, 2022, 7, 1-14.	2.2	6
48	Effect of Number of Bombus impatiens (Hymenoptera: Apidae) Visits on Eggplant Yield. Journal of Economic Entomology, 2015, 108, 1456-1459.	1.8	5
49	Management slows down invasion by non-native plants but does not prevent community change over 35†years in urban forests of the Midwestern USA. Forest Ecology and Management, 2019, 448, 424-431.	3.2	5
50	Management effects on plant community and functional assemblages in Chicago's vacant lots. Applied Vegetation Science, 2020, 23, 266-276.	1.9	5
51	Urban green infrastructures and ecological networks for urban biodiversity conservation. , 2017, , 186-199.		5
52	Anthropogenic and Climatic Factors Differentially Affect Waterbody Area and Connectivity in an Urbanizing Landscape: A Case Study in Zhengzhou, China. Land, 2021, 10, 1070.	2.9	5
53	Vacant lot plant establishment techniques alter urban soil ecosystem services. Urban Forestry and Urban Greening, 2021, 61, 127096.	5.3	4
54	Butterfly declines in protected areas of Illinois: Assessing the influence of two decades of climate and landscape change. PLoS ONE, 2021, 16, e0257889.	2.5	3

EMILY S MINOR

#	Article	IF	CITATIONS
55	The Ecosystem Service Impacts from Invasive Plants in Antietam National Battlefield. Landscape Series, 2019, , 133-154.	0.2	3
56	Assessing Multi-Scale Landscape Connectivity Using Network Analysis. , 2017, , 193-209.		2
57	Powerline Corridors Can Add Ecological Value to Suburban Landscapes When Not Maintained as Lawn. Sustainability, 2022, 14, 7113.	3.2	2
58	Relative attractiveness of ruderals and ornamental plants to flower-visiting insects in a tropical anthropogenic landscape. Urban Forestry and Urban Greening, 2020, 51, 126657.	5.3	1
59	Landscape Connectivity and Ecological Effects. , 2014, , 317-323.		1
60	When a pest is not a pest: Birds indirectly increase defoliation but have no effect on yield of soybean crops. Ecological Applications, 2022, 32, e2527.	3.8	1