David Seung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9050758/publications.pdf Version: 2024-02-01

DAVID SELING

#	Article	IF	CITATIONS
1	Loss of PROTEIN TARGETING TO STARCH 2 has variable effects on starch synthesis across organs and species. Journal of Experimental Botany, 2022, 73, 6367-6379.	4.8	4
2	STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytologist, 2021, 230, 2371-2386.	7.3	25
3	Towards targeted starch modification in plants. Current Opinion in Plant Biology, 2021, 60, 102013.	7.1	24
4	Natural Polymorphisms in Arabidopsis Result in Wide Variation or Loss of the Amylose Component of Starch. Plant Physiology, 2020, 182, 870-881.	4.8	11
5	A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. Journal of Experimental Botany, 2020, 71, 105-115.	4.8	36
6	Amylose in starch: towards an understanding of biosynthesis, structure and function. New Phytologist, 2020, 228, 1490-1504.	7.3	109
7	STARCH SYNTHASE5, a Noncanonical Starch Synthase-Like Protein, Promotes Starch Granule Initiation in Arabidopsis. Plant Cell, 2020, 32, 2543-2565.	6.6	49
8	The Thioredoxin-Regulated α-Amylase 3 of Arabidopsis thaliana Is a Target of S-Glutathionylation. Frontiers in Plant Science, 2019, 10, 993.	3.6	17
9	LIKE SEX4 1 Acts as a \hat{l}^2 -Amylase-Binding Scaffold on Starch Granules during Starch Degradation. Plant Cell, 2019, 31, 2169-2186.	6.6	26
10	Starch granule initiation and morphogenesis—progress in Arabidopsis and cereals. Journal of Experimental Botany, 2019, 70, 771-784.	4.8	56
11	Accelerated ex situ breeding of <i>GBSS</i> - and <i>PTST1</i> -edited cassava for modified starch. Science Advances, 2018, 4, eaat6086.	10.3	111
12	Two Plastidial Coiled-Coil Proteins Are Essential for Normal Starch Granule Initiation in Arabidopsis. Plant Cell, 2018, 30, 1523-1542.	6.6	62
13	Increasing the carbohydrate storage capacity of plants by engineering a glycogen-like polymer pool in the cytosol. Metabolic Engineering, 2017, 40, 23-32.	7.0	7
14	Homologs of PROTEIN TARGETING TO STARCH Control Starch Granule Initiation in Arabidopsis Leaves. Plant Cell, 2017, 29, 1657-1677.	6.6	109
15	Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis. Journal of Biological Chemistry, 2016, 291, 20718-20728.	3.4	39
16	Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants. Plant Cell, 2016, 28, 1860-1878.	6.6	254
17	The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in <i>Arabidopsis thaliana</i> Leaves. Plant Cell, 2016, 28, 1472-1489.	6.6	64
18	PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis. PLoS Biology, 2015, 13, e1002080.	5.6	139

DAVID SEUNG

#	Article	IF	CITATIONS
19	Dissecting the mechanism of abscisic acid-induced dynamic microtubule reorientation using live cell imaging. Functional Plant Biology, 2013, 40, 224.	2.1	13
20	Arabidopsis thaliana AMY3 Is a Unique Redox-regulated Chloroplastic α-Amylase. Journal of Biological Chemistry, 2013, 288, 33620-33633.	3.4	79
21	Genotypic variation in the accumulation of water soluble carbohydrates in wheat. Functional Plant Biology, 2012, 39, 560.	2.1	29
22	Circadian clock-dependent gating in ABA signalling networks. Protoplasma, 2012, 249, 445-457.	2.1	67
23	The Phosphoglucan Phosphatase Like Sex Four2 Dephosphorylates Starch at the C3-Position in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 4096-4111.	6.6	119
24	Effects of Soil Type and Tillage on Protein and Starch Quality in Three Related Wheat Genotypes. Cereal Chemistry, 2010, 87, 95-99.	2.2	15
25	Sub-cellular damage by copper in the cnidarian Zoanthus robustus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 152, 256-262.	2.6	4