Laurence Grimaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9050195/publications.pdf

Version: 2024-02-01

137 papers

3,733 citations

32 h-index 53 g-index

211 all docs

211 docs citations

times ranked

211

2988 citing authors

#	Article	IF	CITATIONS
1	Impact of capping agent removal from Au NPs@MOF core–shell nanoparticle heterogeneous catalysts. Journal of Materials Chemistry A, 2022, 10, 3201-3205.	10.3	20
2	Electrochemical Benzylic C–H Functionalization with Isocyanides. Organic Letters, 2022, 24, 2125-2130.	4.6	18
3	A Single Bioinspired Hexameric Nickel Catechol–Alloxazine Catalyst Combines Metal and Radical Mechanisms for Alkene Hydrosilylation. Chemistry - A European Journal, 2022, 28, e202200596.	3.3	3
4	<i>In Situ</i> Formation of Cationic π-Allylpalladium Precatalysts in Alcoholic Solvents: Application to C–N Bond Formation. ACS Catalysis, 2022, 12, 560-567.	11.2	3
5	Copper-catalyzed transformation of alkyl nitriles to $\langle i \rangle N \langle i \rangle$ -arylacetamide using diaryliodonium salts. RSC Advances, 2021, 11, 15885-15889.	3.6	3
6	Role of dppf Monoxide in the Transmetalation Step of the Suzuki–Miyaura Coupling Reaction. Organometallics, 2021, 40, 1120-1128.	2.3	12
7	A hybrid bioinspired catechol-alloxazine triangular nickel complex stabilizing protons and electrons. Inorganic Chemistry Frontiers, 2021, 8, 5286-5298.	6.0	2
8	Iron(<scp>ii</scp>)-catalyzed intermolecular aziridination of alkenes employing hydroxylamine derivatives as clean nitrene sources. Green Chemistry, 2021, 23, 9428-9432.	9.0	11
9	Cyclopropyl Thioethers, New Inputs for Palladium Catalyzed Ring Opening of Cyclopropanes. Organic Process Research and Development, 2020, 24, 827-834.	2.7	4
10	A DFT Protocol for the Prediction of ³¹ P NMR Chemical Shifts of Phosphine Ligands in First-Row Transition-Metal Complexes. Organometallics, 2020, 39, 3121-3130.	2.3	15
11	Rational Optimization of Lewisâ€Acid Catalysts for Direct Alcohol Amination, Part 2 – Titanium Triflimide as New Active Catalyst. European Journal of Organic Chemistry, 2020, 2020, 3225-3228.	2.4	5
12	Reversing Reactivity: Stereoselective Desulfurative 1,2- $\langle i \rangle$ trans $\langle i \rangle$ - $\langle i \rangle$ O $\langle i \rangle$ -Glycosylation of Anomeric Thiosugars with Carboxylic Acids under Copper or Cobalt Catalysis. Journal of Organic Chemistry, 2020, 85, 8893-8909.	3.2	7
13	Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Organic Letters, 2020, 22, 1991-1996.	4.6	24
14	Rational Optimization of Lewisâ€Acid Catalysts for the Direct Amination of Alcohols, Part 1 – Activity Descriptors for Metal Triflates and Triflimides. European Journal of Organic Chemistry, 2020, 2020, 3219-3224.	2.4	0
15	A Fluorescent False Neurotransmitter as a Dual Electrofluorescent Probe for Secretory Cell Models. ChemPlusChem, 2019, 84, 1578-1586.	2.8	6
16	Formation of XPhosâ€Ligated Palladium(0) Complexes and Reactivity in Oxidative Additions. Chemistry - A European Journal, 2019, 25, 6980-6987.	3.3	26
17	Copper-Catalysed Hydroamination of N-Allenylsulfonamides: The Key Role of Ancillary Coordinating Groups. Synthesis, 2019, 51, 1225-1234.	2.3	12
18	Electrochemical TEMPO-catalyzed multicomponent C(sp ³)â€"H α-carbamoylation of free cyclic secondary amines. Green Chemistry, 2019, 21, 6194-6199.	9.0	29

#	Article	IF	Citations
19	Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles. Biophysical Chemistry, 2019, 245, 1-5.	2.8	10
20	From Benzofurans to Indoles: Palladiumâ€Catalyzed Reductive Ringâ€Opening and Closure via βâ€Phenoxide Elimination. Advanced Synthesis and Catalysis, 2019, 361, 151-159.	4.3	8
21	Coupling electrochemistry and TIRF-microscopy with the fluorescent false neurotransmitter FFN102 supports the fluorescence signals during single vesicle exocytosis detection. Biophysical Chemistry, 2018, 235, 48-55.	2.8	13
22	4-Aminopyrimidine libraries from the Ugi-Smiles reaction of thiouracil. Tetrahedron, 2018, 74, 5222-5231.	1.9	3
23	Taming Nickel-Catalyzed Suzuki-Miyaura Coupling: A Mechanistic Focus on Boron-to-Nickel Transmetalation. ACS Catalysis, 2018, 8, 4812-4823.	11.2	62
24	Labeling of Hyaluronic Acids with a Rhenium-tricarbonyl Tag and Percutaneous Penetration Studied by Multimodal Imaging. Bioconjugate Chemistry, 2018, 29, 987-991.	3.6	17
25	TiCl4-Mediated Synthesis of 3,4-Hetero-Disubstituted Isocoumarins by Means of Isocyanide Insertion Reactions. Synthesis, 2018, 50, 1331-1342.	2.3	7
26	Evidence for a Cooperative Mechanism Involving Two Palladium(0) Centers in the Oxidative Addition of Iodoarenes. Chemistry - A European Journal, 2018, 24, 2192-2199.	3.3	13
27	Metformin reveals a mitochondrial copper addiction of mesenchymal cancer cells. PLoS ONE, 2018, 13, e0206764.	2.5	19
28	Direct Amination of Alcohols Catalyzed by Aluminum Triflate: An Experimental and Computational Study. Chemistry - A European Journal, 2018, 24, 14146-14153.	3.3	13
29	N–N bond formation in Ugi processes: from nitric acid to libraries of nitramines. Chemical Communications, 2017, 53, 2118-2121.	4.1	9
30	A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution. Angewandte Chemie - International Edition, 2017, 56, 2366-2370.	13.8	31
31	Copper-Catalyzed Hydroamination of Allenes: from Mechanistic Understanding to Methodology Development. ACS Catalysis, 2017, 7, 4253-4264.	11.2	50
32	Stereoselective access to trisubstituted fluorinated alkenyl thioethers. Catalysis Science and Technology, 2017, 7, 1921-1927.	4.1	12
33	Ugi–Smiles Couplings of Purine Derivatives. Synlett, 2017, 28, 691-694.	1.8	4
34	Copperâ€Catalyzed Hydroamination of <i>N</i> â€Allenylazoles: Access to Aminoâ€Substituted <i>N</i> â€Vinylazoles. Advanced Synthesis and Catalysis, 2017, 359, 4388-4392.	4.3	20
35	Role of Fluoride Ions in Palladium-Catalyzed Cross-Coupling ReactionsÂ. Synthesis, 2017, 49, 1182-1189.	2.3	16
36	Optimized Conditions for Passerini-Smiles Reactions and Applications to Benzoxazinone Syntheses. Molecules, 2016, 21, 1257.	3.8	6

#	Article	IF	Citations
37	Multiple Roles of Isocyanides in Palladiumâ€Catalyzed Imidoylative Couplings: A Mechanistic Study. Chemistry - A European Journal, 2016, 22, 15491-15500.	3.3	20
38	TiCl ₄ -Mediated Preparation of Thiophthalide Derivatives via Formal Thio-Passerini Reactions. Organic Letters, 2016, 18, 4060-4063.	4.6	17
39	Antagonistic Effect of Acetates in C–N Bond Formation with In Situ Generated Diazonium Salts: A Combined Theoretical and Experimental Study. European Journal of Organic Chemistry, 2016, 2016, 5887-5896.	2.4	9
40	Mechanistic Studies on the Palladiumâ€Catalyzed Direct Câ€5 Arylation of Imidazoles: The Fundamental Role of the Azole as a Ligand for Palladium. Advanced Synthesis and Catalysis, 2016, 358, 597-609.	4.3	23
41	Hypervalentâ€lodineâ€Mediated Synthesis of 1,2â€Dispirodienones: Experimental and Theoretical Investigations. European Journal of Organic Chemistry, 2015, 2015, 7494-7503.	2.4	6
42	Transitionâ€Metalâ€Free αâ€Arylation of Enolizable Aryl Ketones and Mechanistic Evidence for a Radical Process. Angewandte Chemie - International Edition, 2015, 54, 10587-10591.	13.8	129
43	Nitrile Synthesis through Catalyzed Cascades Involving Acid–Nitrile Exchange. Synthesis, 2014, 46, 1802-1806.	2.3	9
44	Three Roles for the Fluoride Ion in Palladiumâ€Catalyzed Hiyama Reactions: Transmetalation of [ArPdFL ₂] by Ar′Si(OR) ₃ . Angewandte Chemie - International Edition, 2014, 53, 6982-6985.	13.8	30
45	The Ugi–Smiles and Passerini–Smiles Couplings: A Story About Phenols in Isocyanideâ€Based Multicomponent Reactions. European Journal of Organic Chemistry, 2014, 2014, 7749-7762.	2.4	65
46	Benzoxazinone synthesis via Passerini–Smiles couplings. Tetrahedron Letters, 2014, 55, 5144-5146.	1.4	5
47	Kinetic Data on the Synergetic Role of Amines and Water in the Reduction of Phosphineâ€Ligated Palladium(II) to Palladium(O). European Journal of Organic Chemistry, 2014, 2014, 4709-4713.	2.4	24
48	Copper-catalyzed olefinic C–H difluoroacetylation of enamides. Chemical Communications, 2014, 50, 5887-5890.	4.1	90
49	Predicting New Ugi–Smiles Couplings: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2014, 20, 9094-9099.	3.3	6
50	Lewis Acid Mediated Fragmentation of Tetrazoles towards Triazoles. European Journal of Organic Chemistry, 2013, 2013, 4752-4755.	2.4	13
51	Substituent Effects in Ugi–Smiles Reactions. Journal of Physical Chemistry A, 2013, 117, 8035-8042.	2.5	13
52	Pyrrolo[2,3-d]pyrimidine synthesis through activation of N-benzyl groups by distal amides. Organic and Biomolecular Chemistry, 2013, 11, 6883.	2.8	18
53	Metal-free aerobic oxidation of benzazole derivatives. Organic and Biomolecular Chemistry, 2013, 11, 3282.	2.8	23
54	Threeâ€Component Metalâ€Free Arylation of Isocyanides. Angewandte Chemie - International Edition, 2013, 52, 7194-7197.	13.8	65

#	Article	IF	Citations
55	Palladium-Catalyzed Ring Opening of Aminocyclopropyl Ugi Adducts. Synlett, 2012, 23, 438-442.	1.8	13
56	Ugi-Smiles Coupling of Thiouracil Derivatives towards 2,4-Diamino Pyrimidines. Synlett, 2012, 23, 632-636.	1.8	7
57	Four-Component Synthesis of Indazole through Ugi-Azide Coupling. Synlett, 2012, 2012, 295-297.	1.8	13
58	Oxazole Synthesis from Isocyanides. Synlett, 2012, 23, 1361-1363.	1.8	17
59	Ugi–Smiles Couplings of 4-Substituted Pyridine Derivatives: A Fast Access to Chloroquine Analogues. Organic Letters, 2012, 14, 476-478.	4.6	23
60	Challenging 50 Years of Established Views on Ugi Reaction: A Theoretical Approach. Journal of Organic Chemistry, 2012, 77, 1361-1366.	3.2	111
61	Straightforward four-component access to spiroindolines. Chemical Communications, 2011, 47, 8145.	4.1	54
62	A Density Functional Theory Study of the Nef-Isocyanide Reaction: Mechanism, Influence of Parameters and Scope. Journal of Physical Chemistry A, 2011, 115, 10106-10112.	2.5	11
63	Palladium catalyzed ring opening of furans as a route to $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes. Chemical Communications, 2011, 47, 1887-1889.	4.1	44
64	Smiles Cascades toward Heterocyclic Scaffolds. Organic Letters, 2011, 13, 534-536.	4.6	40
65	Multicomponent Synthesis of Fused Benzimidazolopiperazines. Journal of Organic Chemistry, 2011, 76, 4728-4733.	3.2	31
66	Three-Component Strategy toward 5-Membered Heterocycles from Isocyanide Dibromides Organic Letters, 2011, 13, 1261-1263.	4.6	57
67	Xanthate Based Radical Cascade Toward Multicomponent Formation of Pyrrolopyrimidines. Molecules, 2011, 16, 9261-9273.	3.8	9
68	Ugi post-condensation copper-triggered oxidative cascade towards pyrazoles. Beilstein Journal of Organic Chemistry, 2011, 7, 1310-1314.	2.2	12
69	Copperâ€Catalyzed Aerobic Oxidative Cyclization of Hydrazones to Pyrazolidinones. European Journal of Organic Chemistry, 2011, 2011, 3117-3121.	2.4	5
70	Phosphiteâ€Mediated Synthesis of Benzimidazoles: A Oneâ€Pot Fourâ€Component Approach from Nitrophenols. European Journal of Organic Chemistry, 2011, 2011, 6177-6180.	2.4	8
71	Evidences for the Key Role of Hydrogen Bonds in Nucleophilic Aromatic Substitution Reactions. Chemistry - A European Journal, 2011, 17, 14929-14934.	3.3	38
72	A new multicomponent reaction for the synthesis of pyridines via cycloaddition of azadienes and ketenimines. Tetrahedron Letters, 2011, 52, 3023-3025.	1.4	27

#	Article	IF	CITATIONS
73	Allyl and Benzyl Dance under Basic Conditions. Synlett, 2011, 2011, 1816-1820.	1.8	4
74	Ugi–Smiles couplings: new entries to N-aryl carboxamide derivatives. Molecular Diversity, 2010, 14, 855-867.	3.9	57
75	Ugi–Smiles couplings in water. Tetrahedron Letters, 2010, 51, 4962-4964.	1.4	20
76	A new pyridine synthesis from azoenamines. Tetrahedron Letters, 2010, 51, 6186-6188.	1.4	8
77	1,2,4-Triazole Synthesis via Amidrazones. Synlett, 2010, 2010, 1771-1774.	1.8	9
78	Ammonia in Ugi-Smiles and Ugi Couplings. Synlett, 2010, 2010, 2784-2788.	1.8	5
79	Three-Component Fischer Indole Synthesis. Synlett, 2010, 2010, 2296-2298.	1.8	16
80	Four-Component Synthesis of Imidazolinium-Fused Heterocycles from Ugi-Smiles Couplings. Synlett, 2010, 2010, 153-157.	1.8	2
81	Nef-Perkow Access to Indolizine Derivatives. Synlett, 2010, 2010, 2474-2476.	1.8	26
82	Toward Pyrrolo[2,3- <i>d</i>]pyrimidine Scaffolds. Journal of Organic Chemistry, 2010, 75, 5343-5346.	3.2	42
83	New xanthate-based radical cyclization onto alkynes. Chemical Communications, 2010, 46, 2489.	4.1	21
84	Three-Component Nef-Huisgen Access to 1,2,4-Triazoles. Synlett, 2009, 2009, 1315-1317.	1.8	14
85	Isocyanide-Based Multicomponent Reaction â€~without' Isocyanides. Synlett, 2009, 2009, 1401-1404.	1.8	7
86	Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron, 2009, 65, 2153-2171.	1.9	258
87	Three-component Ugi–Smiles couplings of cyclic imines. Tetrahedron Letters, 2009, 50, 1741-1743.	1.4	29
88	One-pot synthesis of oxazoles using isocyanide surrogates. Tetrahedron Letters, 2009, 50, 5235-5237.	1.4	29
89	Isocyanide-Based Two-Step Three-Component Keteneimine Formation. Organic Letters, 2009, 11, 1825-1827.	4.6	53
90	"lsocyanide-free―Ugi reactions. Organic and Biomolecular Chemistry, 2009, 7, 3024.	2.8	34

#	Article	IF	Citations
91	Unconventional oxazole formation from isocyanides. Chemical Communications, 2009, , 3907.	4.1	39
92	New Benzotriazole and Benzimidazole Scaffolds from Ugiâ^Smiles Couplings of Isocyanides. Organic Letters, 2009, 11, 995-997.	4.6	47
93	Thiols in Ugi―and Passerini–Smilesâ€Type Couplings. European Journal of Organic Chemistry, 2008, 2008, 5974-5987.	2.4	32
94	Intramolecular Kulinkovich–de Meijere reactions of various disubstituted alkenes bearing amide groups. Tetrahedron, 2008, 64, 8878-8898.	1.9	29
95	Ugi/Smiles access to pyrazine scaffolds. Tetrahedron Letters, 2008, 49, 3208-3211.	1.4	20
96	New palladium-catalyzed aerobic oxidative cleavage and cyclization of N-aryl peptide derivatives. Chemical Communications, 2008, , 1350.	4.1	62
97	New MCRâ^'Heckâ^'Isomerization Cascade toward Indoles. Organic Letters, 2008, 10, 3417-3419.	4.6	69
98	Isocyanide Addition to Acylphosphonates: A Formal Passerini Reaction of Acyl Chlorides. Synlett, 2008, 2008, 1133-1136.	1.8	3
99	New Indolizine Template from the Ugi Reaction. Synlett, 2007, 2007, 0227-0230.	1.8	38
100	New Ugi/Pictet-Spengler Multicomponent Formation of Polycyclic ÂĐiketopiperazines from Isocyanides and α-Keto Acids. Synlett, 2007, 2007, 0500-0502.	1.8	53
101	New Benzothiazole and Benzoxazole Scaffolds from the Ugi-Smiles Couplings of Heterocyclic Thiols. Synlett, 2007, 2007, 0465-0469.	1.8	23
102	Ugi-Smiles Access to Quinoxaline Derivatives. Heterocycles, 2007, 73, 503.	0.7	38
103	New Ugi-Smiles-Metathesis Strategy toward the Synthesis of Pyrimido Azepines. Journal of Organic Chemistry, 2007, 72, 5835-5838.	3.2	38
104	Smiles Rearrangements in Ugi- and Passerini-Type Couplings:  New Multicomponent Access to O- and N-Arylamides. Journal of Organic Chemistry, 2007, 72, 4169-4180.	3.2	112
105	From Simple Ugi Adducts to Indanes and δ-Amidomalonates:  New Manganese(III)-Induced Radical Cascades. Organic Letters, 2007, 9, 4171-4173.	4.6	35
106	New ortho-quinone methide formation: application to three-component coupling of isocyanides, aldehydes and phenols. Organic and Biomolecular Chemistry, 2006, 4, 3410-3413.	2.8	25
107	O-Arylative Passerini Reactions. Organic Letters, 2006, 8, 5021-5023.	4.6	69
108	Direct Access to Heterocyclic Scaffolds by New Multicomponent Ugiâ^'Smiles Couplings. Organic Letters, 2006, 8, 4019-4021.	4.6	75

#	Article	IF	CITATIONS
109	Solvent free preparation of amidophosphonates from isocyanides. Tetrahedron Letters, 2006, 47, 3945-3947.	1.4	13
110	Ugi/xanthate cyclizations as a radical route to lactam scaffolds. Tetrahedron Letters, 2006, 47, 8259-8261.	1.4	33
111	Formation of New Phosphates from Aldehydes by a DBU-Catalyzed Phospha-Brook Rearrangement in a Polar Solvent ChemInform, 2006, 37, no.	0.0	0
112	Phenol Ugi-Smiles Systems: Strategies for the Multicomponent N-Arylation of Primary Amines with Isocyanides, Aldehydes, and Phenols. Angewandte Chemie - International Edition, 2005, 44, 7961-7964.	13.8	163
113	From Isocyanides to Trichloropyruvamides: Application to a New Preparation of Oxamide Derivatives ChemInform, 2005, 36, no.	0.0	0
114	Dramatic Effect of Boron-Based Lewis Acids in Cross-Metathesis Reactions. Synlett, 2005, 2005, 670-672.	1.8	16
115	Formation of New Phosphates from Aldehydes by a DBU-Catalysed Phospha-Brook Rearrangement in a Polar Solvent. Synlett, 2005, 2005, 2335-2336.	1.8	75
116	Towards the Synthesis of Paulitin: New Insights into the Enyne-Metathesis Mechanism. Synlett, 2005, 2005, 2379-2381.	1.8	1
117	Condensation of \hat{l}^2 -hydroxy sulfones and vinyl sulfones with aldehydes and ketones using phenyllithium as base. Comptes Rendus Chimie, 2004, 7, 941-944.	0.5	6
118	New Trimethylaluminum-Induced Mannich-Type Reaction of Hydrazones ChemInform, 2004, 35, no.	0.0	0
119	First Carbamates Conversion to Amides by Simple Alkyl Group Transfer from Trialkylalanes ChemInform, 2004, 35, no.	0.0	0
120	New Access to Fluorinated Ketoglycolic Acid Derivatives from Trifluoropyruvamides ChemInform, 2004, 35, no.	0.0	0
121	New access to fluorinated ketoglycolic acid derivatives from trifluoropyruvamides. Tetrahedron Letters, 2004, 45, 5611-5613.	1.4	5
122	From isocyanides to trichloropyruvamides: application to a new preparation of oxamide derivatives. Tetrahedron Letters, 2004, 45, 8047-8048.	1.4	14
123	First Carbamates Conversion to Amides by Simple Alkyl Group Transfer from Trialkylalanes. Organic Letters, 2004, 6, 381-383.	4.6	17
124	Synthesis of Protected syn 1,3-Diols by Intramolecular Conjugate Addition to Vinyl Sulfones ChemInform, 2003, 34, no.	0.0	0
125	Amines Addition to $\hat{l}\pm$ -Nitrohydrazones: Application to Amidrazone and Triazole Formation ChemInform, 2003, 34, no.	0.0	0
126	Selective Domino Ring-Closing Metathesisâ€"Cross-Metathesis Reactions Between Enynes and Electron-Deficient Alkenes ChemInform, 2003, 34, no.	0.0	0

#	ARTICLE	IF	CITATIONS
127	New Trimethylaluminum-Induced Mannich-Type Reaction of Hydrazones. Journal of Organic Chemistry, 2003, 68, 8733-8735.	3.2	9
128	The Mannich reaction of hydrazones: improved reactivity under solvent-free conditions. Green Chemistry, 2003, 5, 477-479.	9.0	17
129	Selective Domino Ring-Closing Metathesisâ°'Cross-Metathesis Reactions between Enynes and Electron-Deficient Alkenes. Organic Letters, 2003, 5, 2007-2009.	4.6	79
130	The Mannich Reaction of Hydrazones Amenable to Solid Phase Synthesis: A Powerful Tool for Heterocycle Preparation. Synlett, 2002, 2002, 0352-0354.	1.8	22
131	Diastereoselective Synthesis of Protectedsyn1,3-Diols:  Preparation of the C16â^'C24 Portion of Dolabelides. Organic Letters, 2002, 4, 419-421.	4.6	28
132	Synthesis of protected syn 1,3-diols by intramolecular conjugate addition to vinyl sulfones. Tetrahedron Letters, 2002, 43, 7477-7479.	1.4	28
133	Studies towards the synthesis of Fipronil® analogues: improved decarboxylation of α-hydrazonoacid derivatives. Tetrahedron Letters, 2002, 43, 8319-8321.	1.4	25
134	Amines addition to \hat{l} ±-nitrohydrazones: application to amidrazones and triazoles formation. Tetrahedron Letters, 2002, 43, 8925-8927.	1.4	14
135	Diastereoselective intramolecular Diels-Alder reactions towards the synthesis of a taxol C-ring precursor. Tetrahedron, 1997, 53, 9253-9268.	1.9	10
136	Electrochemical TEMPO-Catalyzed Oxidative Ugi-Type Reaction. ACS Organic & Inorganic Au, 0, , .	4.0	6
137	From FFN dual probe screening to ITO microdevice for exocytosis monitoring: electrochemical and fluorescence requirements. ChemElectroChem. 0	3.4	1