
Matthias R Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9050019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
2	The Sixth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2008, 175, 297-313.	7.7	1,202
3	SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH <i>g</i> = 14-20. Astronomical Journal, 2009, 137, 4377-4399.	4.7	905
4	Flows of gas through a protoplanetary gap. Nature, 2013, 493, 191-194.	27.8	304
5	Imaging the water snow-line during a protostellar outburst. Nature, 2016, 535, 258-261.	27.8	154
6	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – I: project description and continuum images at 28 au resolution. Monthly Notices of the Royal Astronomical Society, 2019, 482, 698-714.	4.4	138
7	A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364, 66-69.	12.6	131
8	THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. I. THE OPHIUCHUS MOLECULAR CLOUD. Astrophysical Journal, 2010, 712, 925-941.	4.5	120
9	Accretion of a giant planet onto a white dwarf star. Nature, 2019, 576, 61-64.	27.8	113
10	A Volume-limited Sample of Cataclysmic Variables from Gaia DR2: Space Density and Population Properties. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3799-3827.	4.4	99
11	CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY. VIII. THE FINAL YEAR (2007–2008). Astronomical Journal, 2011, 142, 181.	4.7	79
12	Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample. Astronomy and Astrophysics, 2014, 566, A86.	5.1	76
13	THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. III. PERSEUS, TAURUS, AND AURIGA. Astrophysical Journal, 2012, 750, 157.	4.5	73
14	The scatter of the M dwarf mass–radius relationship. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1083-1096.	4.4	68
15	CATACLYSMIC VARIABLES FROM SDSS. VII. THE SEVENTH YEAR (2006). Astronomical Journal, 2009, 137, 4011-4019.	4.7	62
16	THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS. Astrophysical Journal, 2012, 749, 79.	4.5	58
17	The origin and evolution of magnetic white dwarfs in close binary stars. Nature Astronomy, 2021, 5, 648-654.	10.1	52
18	Trace hydrogen in helium atmosphere white dwarfs as a possible signature of water accretion. Monthly Notices of the Roval Astronomical Society, 2017, 468, 971-980.	4.4	49

MATTHIAS R SCHREIBER

#	Article	IF	CITATIONS
19	An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b [*] . Astronomical Journal, 2017, 154, 26.	4.7	38
20	ALMA Observations of Elias 2–24: A Protoplanetary Disk with Multiple Gaps in the Ophiuchus Molecular Cloud. Astrophysical Journal Letters, 2017, 851, L23.	8.3	37
21	ALMA survey of circumstellar discs in the young stellar cluster IC 348. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3674-3692.	4.4	37
22	Evidence for reduced magnetic braking in polars from binary population models. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5717-5731.	4.4	37
23	Improving signal-to-noise in the direct imaging of exoplanets and circumstellar disks with MLOCI. Astronomy and Astrophysics, 2015, 581, A24.	5.1	36
24	No cataclysmic variables missing: higher merger rate brings into agreement observed and predicted space densities. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5626-5637.	4.4	31
25	The white dwarf binary pathways survey – II. Radial velocities of 1453 FGK stars with white dwarf companions from LAMOST DR 4. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4193-4203.	4.4	30
26	Resolving faint structures in the debris disk around TWA 7. Astronomy and Astrophysics, 2018, 617, A109.	5.1	29
27	Cold Giant Planets Evaporated by Hot White Dwarfs. Astrophysical Journal Letters, 2019, 887, L4.	8.3	27
28	SUBMILLIMETER ARRAY OBSERVATIONS OF THE RX J1633.9-2442 TRANSITION DISK: EVIDENCE FOR MULTIPLE PLANETS IN THE MAKING. Astrophysical Journal, 2012, 752, 75.	4.5	25
29	SPARSE APERTURE MASKING OBSERVATIONS OF THE FL Cha PRE-TRANSITIONAL DISK. Astrophysical Journal Letters, 2013, 762, L12.	8.3	25
30	How Jupiters Save or Destroy Inner Neptunes around Evolved Stars. Astrophysical Journal Letters, 2020, 898, L23.	8.3	24
31	The detection of dust around NNÂSer. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4518-4526.	4.4	21
32	Accretion signatures in the X-shooter spectrum of the substellar companion to SR12. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2994-3003.	4.4	21
33	Close detached white dwarfÂ+Âbrown dwarf binaries: further evidence for low values of the common envelope efficiency. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3587-3595.	4.4	21
34	ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING. Astrophysical Journal Letters, 2015, 806, L22.	8.3	20
35	Distances of cataclysmic variables and related objects derived from <i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2017, 604, A107.	5.1	20
36	mocca-SURVEY database I. Accreting white dwarf binary systems in globular clusters – III. Cataclysmic variables – implications of model assumptions. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2429-2446.	4.4	20

MATTHIAS R SCHREIBER

#	Article	IF	CITATIONS
37	HE 0430–2457: a post-merger extremely low-mass pre-white dwarf in a wide binary posing as an extreme horizontal branch star. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L40-L44.	3.3	18
38	DZ Chamaeleontis: a bona fide photoevaporating disc. Astronomy and Astrophysics, 2018, 610, A13.	5.1	18
39	Dust production in the debris disk around HR 4796 A. Astronomy and Astrophysics, 2019, 630, A142.	5.1	18
40	Evidence for mass accretion driven by spiral shocks onto the white dwarf in SDSS J123813.73–033933.0. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1080-1103.	4.4	17
41	Cataclysmic variable evolution and the white dwarf mass problem: A Review. Advances in Space Research, 2020, 66, 1080-1089.	2.6	17
42	Single magnetic white dwarfs with Balmer emission lines: a small class with consistent physical characteristics as possible signposts for close-in planetary companions. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2564-2574.	4.4	17
43	Are white dwarf magnetic fields in close binaries generated during common-envelope evolution?. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1523-1529.	4.4	16
44	Magnetic dynamos in white dwarfs – II. Relating magnetism and pollution. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 506, L29-L34.	3.3	15
45	Debris discs with multiple absorption features in metallic lines: circumstellar or interstellar origin?. Monthly Notices of the Royal Astronomical Society, 2018, 480, 488-520.	4.4	14
46	Magnetic dynamos in white dwarfs – III. Explaining the occurrence of strong magnetic fields in close double white dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3090-3103.	4.4	13
47	Magnetic dynamos in white dwarfs – I. Explaining the dearth of bright intermediate polars in globular clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 505, L74-L78.	3.3	12
48	The White Dwarf Binary Pathways Survey. V. The Gaia White Dwarf Plus AFGK Binary Sample and the Identification of 23 Close Binaries. Astrophysical Journal, 2020, 905, 38.	4.5	12
49	Sub-millimetre non-contaminated detection of the disc around TWA 7 by ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5552-5557.	4.4	10
50	On the absence of symbiotic stars in globular clusters. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3436-3447.	4.4	10
51	A 99 minute Double-lined White Dwarf Binary from SDSS-V. Astrophysical Journal, 2021, 921, 160.	4.5	10
52	The White Dwarf Binary Pathways Survey â^'III. Contamination from hierarchical triples containing a white dwarf. Monthly Notices of the Royal Astronomical Society, 2020, 494, 915-922.	4.4	8
53	The Characterization of the Dust Content in the Ring Around Sz 91: Indications of Planetesimal Formation?. Astrophysical Journal, 2021, 923, 128.	4.5	6
54	NaCo polarimetric observations of Sz 91 transitional disc: a remarkable case of dust filtering. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1531-1542.	4.4	5

#	Article	IF	CITATIONS
55	Breaking the Degeneracy in Magnetic Cataclysmic Variable X-Ray Spectral Modeling Using X-Ray Light Curves. Astrophysical Journal, Supplement Series, 2021, 256, 45.	7.7	5
56	The Planets around the post-Common Envelope Binary NN Serpentis. , 2011, , .		4
57	Bipolar molecular outflow of the very low-mass star Par-Lup3-4. Astronomy and Astrophysics, 2020, 640, A13.	5.1	4
58	ALMA observations of the early stages of substellar formation in the Lupus 1 and 3 molecular clouds. Astronomy and Astrophysics, 2021, 646, A10.	5.1	3
59	Monte Carlo Simulations of the Post-Common-Envelope White-Dwarf Main-Sequence Binary Population. , 2010, , .		Ο
60	The effects of the observational selection criteria on the post-common envelope white dwarf-main sequence binary population. , 2010, , .		0