Betty Y S Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/904857/publications.pdf Version: 2024-02-01

RETTV V S KIM

#	Article	IF	CITATIONS
1	Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 2008, 3, 145-150.	31.5	2,452
2	Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 2002, 417, 74-78.	27.8	1,023
3	Nanomedicine. New England Journal of Medicine, 2010, 363, 2434-2443.	27.0	987
4	Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 2019, 19, 568-586.	28.4	557
5	Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature Biomedical Engineering, 2020, 4, 69-83.	22.5	415
6	lmproving immune–vascular crosstalk for cancer immunotherapy. Nature Reviews Immunology, 2018, 18, 195-203.	22.7	340
7	Breaking Down the Barriers to Precision Cancer Nanomedicine. Trends in Biotechnology, 2017, 35, 159-171.	9.3	254
8	Designing nanomedicine for immuno-oncology. Nature Biomedical Engineering, 2017, 1, .	22.5	178
9	Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Scientific Reports, 2016, 6, 26269.	3.3	167
10	Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. Journal of Clinical Investigation, 2018, 128, 2104-2115.	8.2	152
11	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
12	Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nature Communications, 2020, 11, 1508.	12.8	138
13	Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nature Nanotechnology, 2017, 12, 763-769.	31.5	136
14	Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles. ACS Nano, 2015, 9, 8689-8696.	14.6	134
15	Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nature Communications, 2022, 13, 767.	12.8	128
16	Immunomodulating Nanomedicine for Cancer Therapy. Nano Letters, 2018, 18, 6655-6659.	9.1	121
17	Immune Priming of the Tumor Microenvironment by Radiation. Trends in Cancer, 2016, 2, 638-645.	7.4	120
18	Biodegradable Quantum Dot Nanocomposites Enable Live Cell Labeling and Imaging of Cytoplasmic Targets. Nano Letters, 2008, 8, 3887-3892.	9.1	116

ΒΕΤΤΥ Υ S ΚΙΜ

#	Article	IF	CITATIONS
19	Advances and challenges of nanotechnology-based drug delivery systems. Expert Opinion on Drug Delivery, 2007, 4, 621-633.	5.0	108
20	How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nature Biomedical Engineering, 2018, 2, 797-809.	22.5	99
21	The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clinical Cancer Research, 2019, 25, 1709-1717.	7.0	95
22	Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery. Advanced Science, 2019, 6, 1802070.	11.2	82
23	Nanotechnology platforms for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1590.	6.1	82
24	Tumor Vasculatures: A New Target for Cancer Immunotherapy. Trends in Pharmacological Sciences, 2019, 40, 613-623.	8.7	79
25	S100A4 Is a Biomarker and Regulator of Glioma Stem Cells That Is Critical for Mesenchymal Transition in Glioblastoma. Cancer Research, 2017, 77, 5360-5373.	0.9	78
26	Considerations for designing preclinical cancer immune nanomedicine studies. Nature Nanotechnology, 2021, 16, 6-15.	31.5	77
27	Low-Dose Anti-Angiogenic Therapy Sensitizes Breast Cancer to PD-1 Blockade. Clinical Cancer Research, 2020, 26, 1712-1724.	7.0	76
28	Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nature Nanotechnology, 2022, 17, 891-899.	31.5	74
29	Stereotactic radiosurgery of early melanoma brain metastases after initiation of anti-CTLA-4 treatment is associated with improved intracranial control. Radiotherapy and Oncology, 2017, 125, 80-88.	0.6	58
30	Vascular ApoE4 Impairs Behavior by Modulating Gliovascular Function. Neuron, 2021, 109, 438-447.e6.	8.1	42
31	Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2007576.	21.0	42
32	The role of elective nodal irradiation for esthesioneuroblastoma patients with clinically negative neck. Practical Radiation Oncology, 2016, 6, 241-247.	2.1	41
33	The role of postmastectomy radiotherapy in clinically node-positive, stage II-III breast cancer patients with pathological negative nodes after neoadjuvant chemotherapy: an analysis from the NCDB. Oncotarget, 2016, 7, 24848-24859.	1.8	40
34	Lessons from immuno-oncology: a new era for cancer nanomedicine?. Nature Reviews Drug Discovery, 2017, 16, 369-370.	46.4	37
35	Extracellular Vesicles: An Emerging Nanoplatform for Cancer Therapy. Frontiers in Oncology, 2020, 10, 606906.	2.8	36
36	Pazopanib therapy for cerebellar hemangioblastomas in von Hippel–Lindau disease. Targeted Oncology, 2012, 7, 145-149.	3.6	34

ΒΕΤΤΥ Υ S ΚΙΜ

#	Article	IF	CITATIONS
37	Folate Receptor-Targeted Albumin Nanoparticles Based on Microfluidic Technology to Deliver Cabazitaxel. Cancers, 2019, 11, 1571.	3.7	34
38	Spatiotemporal Immunomodulation Using Biomimetic Scaffold Promotes Endochondral Ossificationâ€Mediated Bone Healing. Advanced Science, 2021, 8, e2100143.	11.2	33
39	Assessing Near-Infrared Quantum Dots for Deep Tissue, Organ, and Animal Imaging Applications. Journal of the Association for Laboratory Automation, 2008, 13, 6-12.	2.8	30
40	Elevated risks of subsequent endometrial cancer development among breast cancer survivors with different hormone receptor status: a SEER analysis. Breast Cancer Research and Treatment, 2015, 150, 439-445.	2.5	30
41	Diagnostic discrepancies in malignant astrocytoma due to limited small pathological tumor sample can be overcome by IDH1 testing. Journal of Neuro-Oncology, 2014, 118, 405-412.	2.9	28
42	Prognostic value of p16 expression in Epsteinâ€Barr virus–positive nasopharyngeal carcinomas. Head and Neck, 2016, 38, E1459-66.	2.0	28
43	Cerebral Venous Thrombosis Associated with Intracranial Hemorrhage and Timing of Anticoagulation after Hemicraniectomy. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2312-2316.	1.6	23
44	Membrane TLR9 Positive Neutrophil Mediated MPLA Protects Against Fatal Bacterial Sepsis. Theranostics, 2019, 9, 6269-6283.	10.0	22
45	Assessment of Trends in Second Primary Cancers in Patients With Metastatic Melanoma From 2005 to 2016. JAMA Network Open, 2020, 3, e2028627.	5.9	22
46	The role of radiation therapy in treatment of adults with newly diagnosed glioblastoma multiforme: a systematic review and evidence-based clinical practice guideline update. Journal of Neuro-Oncology, 2020, 150, 215-267.	2.9	19
47	Self-Assembled pH-Sensitive Polymeric Nanoparticles for the Inflammation-Targeted Delivery of Cu/Zn-Superoxide Dismutase. ACS Applied Materials & Interfaces, 2021, 13, 18152-18164.	8.0	14
48	Osteopontin is a multi-faceted pro-tumorigenic driver for central nervous system lymphoma. Oncotarget, 2016, 7, 32156-32171.	1.8	14
49	Non-contiguous meningeal metastases of olfactory neuroblastoma. Journal of Neuro-Oncology, 2016, 126, 201-203.	2.9	13
50	Immune landscape of a genetically engineered murine model of glioma compared with human glioma. JCI Insight, 2022, 7, .	5.0	10
51	Advanced Immunotherapy Approaches for Glioblastoma. Advanced Therapeutics, 2021, 4, 2100046.	3.2	8
52	Visualization of Hepatocellular Regeneration in Mice After Partial Hepatectomy. Journal of Surgical Research, 2019, 235, 494-500.	1.6	6
53	Perspectives of Nanotechnology in the Management of Gliomas. Progress in Neurological Surgery, 2018, 32, 196-210.	1.3	4
54	Strategies of Perturbing Ion Homeostasis for Cancer Therapy. Advanced Therapeutics, 2022, 5, 2100189.	3.2	3

4

ΒΕΤΤΥ Υ S ΚΙΜ

#	Article	IF	CITATIONS
55	Study of Osteocyte Behavior by High-Resolution Intravital Imaging Following Photo-Induced Ischemia. Molecules, 2018, 23, 2874.	3.8	2
56	Cancer Stem Cells, not Bulk Tumor Cells, Determine Mechanisms of Resistance to SMO Inhibitors. Cancer Research Communications, 2022, 2, 402-416.	1.7	2
57	Harnessing cGASâ€ S TING Pathway for Cancer Immunotherapy: From Bench to Clinic. Advanced Therapeutics, 2022, 5, .	3.2	2
58	Challenges and opportunities of nanotechnology in cancer immunotherapy. , 2022, , 197-239.		1
59	Cancer nanomedicines for enhanced immunotherapy. , 2022, , .		Ο