List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9048006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nature Materials, 2009, 8, 354-359.	13.3	925
2	Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids. Macromolecules, 2002, 35, 16-39.	2.2	639
3	Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites. Soft Matter, 2014, 10, 13-38.	1.2	231
4	Self-assembly of rod–coil block copolymers. Journal of Chemical Physics, 2004, 120, 5824-5838.	1.2	203
5	Origins of Linear Viscoelastic Behavior of Polymerâ^'Nanoparticle Composites. Macromolecules, 2006, 39, 844-856.	2.2	158
6	Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. Journal of Chemical Physics, 2017, 147, 020901.	1.2	154
7	Fluctuation Effects in Ternary AB + A + B Polymeric Emulsions. Macromolecules, 2003, 36, 9237-9248.	2.2	126
8	Modeling the anisotropic self-assembly of spherical polymer-grafted nanoparticles. Journal of Chemical Physics, 2009, 131, 221102.	1.2	111
9	Curvature effects upon interactions of polymer-grafted nanoparticles in chemically identical polymer matrices. Journal of Chemical Physics, 2010, 133, 154904.	1.2	109
10	Mean-field models of structure and dispersion of polymer-nanoparticle mixtures. Soft Matter, 2010, 6, 4010.	1.2	109
11	Mechanisms Underlying Ion Transport in Polymerized Ionic Liquids. Journal of the American Chemical Society, 2017, 139, 9511-9514.	6.6	107
12	Origin of Dynamical Properties in PMMAâ~'C60 Nanocomposites. Macromolecules, 2007, 40, 5424-5432.	2.2	106
13	Regioregularity and Single Polythiophene Chain Conformation. Journal of Physical Chemistry Letters, 2011, 2, 1400-1404.	2.1	104
14	Universalization of the Phase Diagram for a Model Rodâ^'Coil Diblock Copolymer. Macromolecules, 2008, 41, 6809-6817.	2.2	99
15	Influence of Dielectric Constant on Ionic Transport in Polyether-Based Electrolytes. ACS Macro Letters, 2017, 6, 1362-1367.	2.3	89
16	Strong Segregation Theory of Block Copolymerâ^'Nanoparticle Composites. Macromolecules, 2006, 39, 8499-8510.	2.2	87
17	Computer Simulations of Ion Transport in Polymer Electrolyte Membranes. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 349-371.	3.3	84
18	Effect of Polymer Polarity on Ion Transport: A Competition between Ion Aggregation and Polymer Segmental Dynamics. ACS Macro Letters, 2018, 7, 1149-1154.	2.3	84

#	Article	IF	CITATIONS
19	Effect of Nanoparticles on Ion Transport in Polymer Electrolytes. Macromolecules, 2015, 48, 2773-2786.	2.2	78
20	Highlyâ€Cyclable Roomâ€Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910749.	7.8	78
21	Universality in Structure and Elasticity of Polymer-Nanoparticle Gels. Physical Review Letters, 2006, 96, 177805.	2.9	77
22	Noncontinuum effects in nanoparticle dynamics in polymers. Journal of Chemical Physics, 2006, 124, 221102.	1.2	74
23	Nanoparticles in Solutions of Adsorbing Polymers:  Pair Interactions, Percolation, and Phase Behavior. Langmuir, 2006, 22, 969-981.	1.6	72
24	Highly Ordered Single Conjugated Polymer Chain Rod Morphologies. Journal of Physical Chemistry C, 2010, 114, 20896-20902.	1.5	69
25	Correlations between Morphologies and Photovoltaic Properties of Rodâ^'Coil Block Copolymers. Macromolecules, 2010, 43, 543-552.	2.2	68
26	Relation between Glass Transition Temperatures in Polymer Nanocomposites and Polymer Thin Films. Physical Review Letters, 2008, 101, 075702.	2.9	66
27	Highly Asymmetric Lamellar Nanopatterns <i>via</i> Block Copolymer Blends Capable of Hydrogen Bonding. ACS Nano, 2012, 6, 7966-7972.	7.3	65
28	Engineering Li/Na selectivity in 12-Crown-4–functionalized polymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	65
29	Mechanisms Underlying Ion Transport in Lamellar Block Copolymer Membranes. ACS Macro Letters, 2012, 1, 513-518.	2.3	64
30	A coarse-grained explicit solvent simulation of rheology of colloidal suspensions. Journal of Chemical Physics, 2005, 122, 104906.	1.2	60
31	Polymer-bridged gels of nanoparticles in solutions of adsorbing polymers. Journal of Chemical Physics, 2006, 125, 064903.	1.2	58
32	Dispersion and Percolation Transitions of Nanorods in Polymer Solutions. Macromolecules, 2007, 40, 344-354.	2.2	58
33	lon transport in polymeric ionic liquids: recent developments and open questions. Molecular Systems Design and Engineering, 2019, 4, 280-293.	1.7	58
34	A Model for Self-Assembly in Side Chain Liquid Crystalline Block Copolymers. Macromolecules, 2008, 41, 218-229.	2.2	53
35	Nanostructured block copolymer muscles. Nature Nanotechnology, 2022, 17, 752-758.	15.6	53
36	Influence of Counterion Structure on Conductivity of Polymerized Ionic Liquids. ACS Macro Letters, 2019, 8, 387-392.	2.3	52

#	Article	IF	CITATIONS
37	Translocation of a \hat{l}^2 -hairpin-forming peptide through a cylindrical tunnel. Journal of Chemical Physics, 2004, 121, 10268-10277.	1.2	50
38	Depletion and pair interactions of proteins in polymer solutions. Journal of Chemical Physics, 2005, 122, 154901.	1.2	50
39	Communication: Self-assembly of semiflexible-flexible block copolymers. Journal of Chemical Physics, 2012, 136, .	1.2	49
40	Influence of molecular weight on ion-transport properties of polymeric ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 29134-29145.	1.3	49
41	Interfacial Phenomena in Polymer Blends: A Self-Consistent Brownian Dynamics Study. Macromolecules, 2004, 37, 10180-10194.	2.2	45
42	Structure and mechanisms underlying ion transport in ternary polymer electrolytes containing ionic liquids. Journal of Chemical Physics, 2017, 146, 074902.	1.2	45
43	Ion Mobilities, Transference Numbers, and Inverse Haven Ratios of Polymeric Ionic Liquids. ACS Macro Letters, 2020, 9, 84-89.	2.3	44
44	Phase Behavior of Binary Blends of Block Copolymers Having Hydrogen Bonding. Macromolecules, 2011, 44, 4970-4976.	2.2	43
45	Blockiness and Sequence Polydispersity Effects on the Phase Behavior and Interfacial Properties of Gradient Copolymers. Macromolecules, 2012, 45, 6281-6297.	2.2	43
46	Multiscale Simulations of Lamellar PS–PEO Block Copolymers Doped with LiPF ₆ Ions. Macromolecules, 2017, 50, 4542-4554.	2.2	43
47	Constructing Sacrificial Multiple Networks To Toughen Elastomer. Macromolecules, 2019, 52, 4154-4168.	2.2	43
48	Molecular wall effects: Are conditions at a boundary "boundary conditionsâ€ ? . Physical Review E, 2000, 61, 6879-6897.	0.8	41
49	Dynamical mean-field theory for inhomogeneous polymeric systems. Journal of Chemical Physics, 2003, 118, 4345-4348.	1.2	41
50	Dewetting of PMMA on PSâ^Brush Substrates. Macromolecules, 2009, 42, 7919-7923.	2.2	41
51	Ion Transport in Polymerized Ionic Liquid–Ionic Liquid Blends. Macromolecules, 2018, 51, 9471-9483.	2.2	41
52	Modeling viscoelastic properties of triblock copolymers: A DPD simulation study. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 15-25.	2.4	40
53	Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes. ACS Macro Letters, 2013, 2, 1001-1005.	2.3	40
54	Glass Transition Behavior of PS Films on Grafted PS Substrates. Macromolecules, 2010, 43, 9892-9898.	2.2	38

#	Article	IF	CITATIONS
55	Some issues in polymer nanocomposites: Theoretical and modeling opportunities for polymer physics. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2666-2671.	2.4	37
56	Atomistic Simulations of Structure of Solvated Sulfonated Poly(ether ether ketone) Membranes and Their Comparisons to Nafion: II. Structure and Transport Properties of Water, Hydronium Ions, and Methanol. Journal of Physical Chemistry B, 2010, 114, 8367-8373.	1.2	35
57	Experimental and Modeling Study of Domain Orientation in Confined Block Copolymer Thin Films. Macromolecules, 2016, 49, 308-316.	2.2	34
58	Mechanical and Viscoelastic Properties of Polymer-Grafted Nanorod Composites from Molecular Dynamics Simulation. Macromolecules, 2018, 51, 2641-2652.	2.2	33
59	Reversal of Salt Concentration Dependencies of Salt and Water Diffusivities in Polymer Electrolyte Membranes. ACS Macro Letters, 2018, 7, 739-744.	2.3	32
60	Interplay between Depletion and Electrostatic Interactions in Polyelectrolyte–Nanoparticle Systems. Macromolecules, 2014, 47, 6095-6112.	2.2	31
61	Effect of the Degree of Hydrogen Bonding on Asymmetric Lamellar Microdomains in Binary Block Copolymer Blends. Macromolecules, 2015, 48, 6347-6352.	2.2	31
62	Influence of molecular weight and degree of segregation on local segmental dynamics of ordered block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 859-864.	2.4	31
63	Dynamics of Two-Phase Fluid Interfaces in Random Porous Media. Physical Review Letters, 1998, 81, 578-581.	2.9	30
64	Domain Size Control in Self-Assembling Rodâ^'Coil Block Copolymer and Homopolymer Blends. Macromolecules, 2007, 40, 3320-3327.	2.2	30
65	Screening of hydrodynamic interactions in Brownian rod suspensions. Journal of Chemical Physics, 2008, 128, 134901.	1.2	30
66	Rational Design of Thermally Stable, Bicontinuous Donor/Acceptor Morphologies with Conjugated Block Copolymer Additives. ACS Macro Letters, 2015, 4, 867-871.	2.3	30
67	Influence of side chain linker length on ionâ€ŧransport properties of polymeric ionic liquids. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1718-1723.	2.4	30
68	Ideal glass transitions in thin films: An energy landscape perspective. Journal of Chemical Physics, 2003, 119, 1897-1900.	1.2	29
69	Influence of Block Copolymer Compatibilizers on the Morphologies of Semiflexible Polymer/Solvent Blends. Journal of Physical Chemistry B, 2014, 118, 4425-4441.	1.2	29
70	Design of Polymer Blend Electrolytes through a Machine Learning Approach. Macromolecules, 2020, 53, 9449-9459.	2.2	29
71	Equilibrium characteristics of semiflexible polymer solutions near probe particles. Physical Review E, 2008, 78, 051804.	0.8	28
72	Many-body interactions and coarse-grained simulations of structure of nanoparticle-polymer melt mixtures. Journal of Chemical Physics, 2010, 133, 144904.	1.2	28

#	Article	IF	CITATIONS
73	Effect of the Sideâ€Chainâ€Distribution Density on the Singleâ€Conjugatedâ€Polymerâ€Chain Conformation. ChemPhysChem, 2013, 14, 4143-4148.	1.0	28
74	Phase Behavior of Binary Blend Consisting of Asymmetric Polystyrene- <i>block</i> -poly(2-vinylpyridine) Copolymer and Asymmetric Deuterated Polystyrene- <i>block</i> -poly(4-hydroxystyrene) Copolymer. Macromolecules, 2015, 48, 1262-1266.	2.2	27
75	Curvature Modification of Block Copolymer Microdomains Using Blends of Block Copolymers with Hydrogen Bonding Interactions. Macromolecules, 2012, 45, 8729-8742.	2.2	26
76	Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS- <i>b</i> -PMMA Thin Films. Macromolecules, 2017, 50, 5858-5866.	2.2	26
77	Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix. Macromolecules, 2018, 51, 4143-4157.	2.2	26
78	Ordering poly(trimethylsilyl styreneâ€ <i>block</i> â€ <scp><i>D</i>,<i>L</i></scp> â€lactide) block copolymers in thin films by solvent annealing using a mixture of domainâ€selective solvents. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 36-45.	2.4	25
79	Mechanisms of Ion Transport in Block Copolymeric Polymerized Ionic Liquids. ACS Macro Letters, 2019, 8, 1096-1101.	2.3	25
80	Phase behavior of gradient copolymer solutions: a Monte Carlo simulation study. Soft Matter, 2012, 8, 6471.	1.2	24
81	Computer Simulations of Gas Diffusion in Polystyrene–C ₆₀ Fullerene Nanocomposites Using Trajectory Extending Kinetic Monte Carlo Method. Journal of Physical Chemistry B, 2012, 116, 95-103.	1.2	24
82	Tail Stateâ€Assisted Charge Injection and Recombination at the Electronâ€Collecting Interface of P3HT:PCBM Bulkâ€Heterojunction Polymer Solar Cells. Advanced Energy Materials, 2012, 2, 1447-1455.	10.2	24
83	Multibody Interactions, Phase Behavior, and Clustering in Nanoparticle–Polyelectrolyte Mixtures. Journal of Physical Chemistry B, 2015, 119, 14536-14550.	1.2	24
84	Influence of nanoparticle surface chemistry on ion transport in polymer nanocomposite electrolytes. Solid State Ionics, 2016, 286, 57-65.	1.3	24
85	Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes. Soft Matter, 2017, 13, 7793-7803.	1.2	24
86	Mechanisms of Ion Transport in Lithium Salt-Doped Polymeric Ionic Liquid Electrolytes. Macromolecules, 2020, 53, 6995-7008.	2.2	24
87	Molecular Dynamics Simulation of the Structural, Mechanical, and Reprocessing Properties of Vitrimers Based on a Dynamic Covalent Polymer Network. Macromolecules, 2022, 55, 1091-1103.	2.2	24
88	Dynamics of Probe Diffusion in Rod Solutions. Physical Review Letters, 2008, 100, 128302.	2.9	23
89	A Comparison of the Dynamical Relaxations in a Model for Glass Transition in Polymer Nanocomposites and Polymer Thin Films. Macromolecules, 2010, 43, 5851-5862.	2.2	23
90	Fluctuation effects on the order-disorder transition in polydisperse copolymer melts. Journal of Chemical Physics, 2013, 139, 214905.	1.2	23

#	Article	IF	CITATIONS
91	Influence of interfacial layers upon the barrier properties of polymer nanocomposites. Journal of Chemical Physics, 2009, 130, 104901.	1.2	22
92	Coarse-graining in simulations of multicomponent polymer systems. Journal of Chemical Physics, 2014, 141, 244904.	1.2	22
93	Interactions between polymerâ€grafted particles and bare particles for biocompatibility applications. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2566-2577.	2.4	21
94	Achieving Bicontinuous Microemulsion Like Morphologies in Organic Photovoltaics. ACS Macro Letters, 2015, 4, 266-270.	2.3	21
95	Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives. Journal of Materials Chemistry A, 2016, 4, 14804-14813.	5.2	21
96	Surface Energies and Self-Assembly of Block Copolymers on Grafted Surfaces. Physical Review Letters, 2011, 107, 148304.	2.9	20
97	A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells. Journal of Applied Physics, 2013, 113, .	1.1	20
98	Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes. Journal of Chemical Physics, 2016, 144, 154905.	1.2	20
99	Coarse-Grained Simulations of Penetrant Transport in Polymer Nanocomposites. Macromolecules, 2011, 44, 9839-9851.	2.2	19
100	Influence of protein charge patches on the structure of protein–polyelectrolyte complexes. Soft Matter, 2018, 14, 9475-9488.	1.2	19
101	Structure and Transport Properties of Lithium-Doped Aprotic and Protic Ionic Liquid Electrolytes: Insights from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2019, 123, 5588-5600.	1.2	19
102	Interfacial properties of statistical copolymer brushes in contact with homopolymer melts. Journal of Chemical Physics, 2011, 134, 154903.	1.2	18
103	Block copolymer compatibilizers for ternary blend polymer bulk heterojunction solar cells – an opportunity for computation aided molecular design. Molecular Systems Design and Engineering, 2016, 1, 353-369.	1.7	18
104	Nonmonotonic Glass Transition Temperature of Polymer Films Supported on Polymer Brushes. Macromolecules, 2018, 51, 4451-4461.	2.2	18
105	Influence of Host Polarity on Correlating Salt Concentration, Molecular Weight, and Molar Conductivity in Polymer Electrolytes. ACS Macro Letters, 2019, 8, 888-892.	2.3	18
106	Ion transport in backbone-embedded polymerized ionic liquids. Journal of Chemical Physics, 2019, 151, 124902.	1.2	18
107	Influence of Hydrogen Bonding Effects on Methanol and Water Diffusivities in Acid–Base Polymer Blend Membranes of Sulfonated Poly(ether ether ketone) and Base Tethered Polysulfone. Journal of Physical Chemistry B, 2013, 117, 5315-5329.	1.2	17
108	Interactions and Aggregation of Charged Nanoparticles in Uncharged Polymer Solutions. Langmuir, 2015, 31, 12328-12338.	1.6	17

#	Article	IF	CITATIONS
109	Directed self assembly of block copolymers using chemical patterns with sidewall guiding lines, backfilled with random copolymer brushes. Soft Matter, 2015, 11, 9107-9114.	1.2	17
110	Segmental dynamics in lamellar phases of tapered copolymers. Soft Matter, 2016, 12, 7818-7823.	1.2	17
111	Relationship between Ionic Conductivity, Glass Transition Temperature, and Dielectric Constant in Poly(vinyl ether) Lithium Electrolytes. ACS Macro Letters, 2021, 10, 1002-1007.	2.3	17
112	Self-Assembly of Diblock Copolymer on Substrates Modified by Random Copolymer Brushes. Macromolecules, 2011, 44, 9867-9881.	2.2	16
113	Diffusivity of Mono- and Divalent Salts and Water in Polyelectrolyte Desalination Membranes. Journal of Physical Chemistry B, 2018, 122, 8098-8110.	1.2	16
114	A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids. Macromolecules, 2021, 54, 4997-5010.	2.2	16
115	Model for the free-volume distributions of equilibrium fluids. Journal of Chemical Physics, 2006, 124, 214502.	1.2	15
116	Evaluating the Role of Additive pKa on the Proton Conductivities of Blended Sulfonated Poly(ether) Tj ETQq0 0 () rg <u>BT</u> /Ov	erlock 10 Tf 5
117	Structural signatures of mobility on intermediate time scales in a supercooled fluid. Journal of Chemical Physics, 2010, 132, .	1.2	15
118	Effect of confinement on polymer-induced depletion interactions between nanoparticles. Journal of Chemical Physics, 2013, 138, 234905.	1.2	15
119	Energy Transfer Directly to Bilayer Interfaces to Improve Exciton Collection in Organic Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 19011-19021.	1.5	15
120	Effect of Host Incompatibility and Polarity Contrast on Ion Transport in Ternary Polymer-Polymer-Salt Blend Electrolytes. Macromolecules, 2020, 53, 875-884.	2.2	15
121	Noncontinuum effects on the mobility of nanoparticles in unentangled polymer solutions. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2145-2150.	2.4	14
122	Mean field theory of charged dendrimer molecules. Journal of Chemical Physics, 2011, 135, 204902.	1.2	13
123	Conjugation of polybasic dendrimers with neutral grafts: effect on conformation and encapsulation of acidic drugs. Soft Matter, 2012, 8, 11817.	1.2	13
124	Entanglements in Lamellar Phases of Diblock Copolymers. Macromolecules, 2015, 48, 6321-6328.	2.2	13
125	Preliminary investigation of using a multi-component phase field model to evaluate microstructure of asphalt binders. International Journal of Pavement Engineering, 2017, 18, 775-782.	2.2	13
126	Prediction and Optimization of Ion Transport Characteristics in Nanoparticle-Based Electrolytes Using Convolutional Neural Networks. Journal of Physical Chemistry B, 2021, 125, 4838-4849.	1.2	13

#	Article	IF	CITATIONS
127	Origins of Lithium/Sodium Reverse Permeability Selectivity in 12-Crown-4-Functionalized Polymer Membranes. ACS Macro Letters, 2021, 10, 1167-1173.	2.3	13
128	Machine Learning–Assisted Design of Material Properties. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 235-254.	3.3	13
129	Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles. Journal of Chemical Physics, 2015, 143, 164904.	1.2	12
130	Effect of anisotropic charge transport on device characteristics of polymer solar cells. Applied Physics Letters, 2009, 95, 194101.	1.5	11
131	Efficacy of Different Block Copolymers in Facilitating Microemulsion Phases in Polymer Blend Systems. Macromolecules, 2013, 46, 8334-8344.	2.2	11
132	Interactions between Grafted Cationic Dendrimers and Anionic Bilayer Membranes. Journal of Physical Chemistry B, 2013, 117, 9806-9820.	1.2	11
133	Influence of Charge Regulation and Charge Heterogeneity on Complexation between Polyelectrolytes and Proteins. Journal of Physical Chemistry B, 2020, 124, 4421-4435.	1.2	11
134	lon transport mechanisms in saltâ€doped polymerized zwitterionic electrolytes. Journal of Polymer Science, 2020, 58, 578-588.	2.0	11
135	Cation–Ligand Interactions Dictate Salt Partitioning and Diffusivity in Ligand-Functionalized Polymer Membranes. Macromolecules, 2022, 55, 2260-2270.	2.2	11
136	Influence of Polarizability on the Structure, Dynamic Characteristics, and Ion-Transport Mechanisms in Polymeric Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 2583-2592.	1.2	11
137	Improving Energy Relay Dyes for Dye Sensitized Solar Cells by Increasing Donor Homotransfer. Journal of Physical Chemistry C, 2014, 118, 14098-14106.	1.5	10
138	Design of bicontinuous donor/acceptor morphologies for use as organic solar cell active layers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 884-895.	2.4	10
139	Impact of cross-linking of polymers on transport of salt and water in polyelectrolyte membranes: A mesoscopic simulation study. Journal of Chemical Physics, 2018, 149, 224902.	1.2	10
140	Transport Mechanisms Underlying Ionic Conductivity in Nanoparticle-Based Single-Ion Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 6970-6975.	2.1	10
141	Connecting Solute Diffusion to Morphology in Triblock Copolymer Membranes. Macromolecules, 2020, 53, 2336-2343.	2.2	10
142	Reactions in microemulsions: Effect of thermal fluctuations on reaction kinetics. Journal of Chemical Physics, 2000, 113, 2901-2917.	1.2	9
143	Complexation between weakly basic dendrimers and linear polyelectrolytes: effects of grafts, chain stiffness, and pOH. Soft Matter, 2013, 9, 6955.	1.2	9
144	Exploiting the Combined Influence of Morphology and Energy Cascades in Ternary Blend Organic Solar Cells Based on Block Copolymer Additives. Macromolecules, 2016, 49, 5137-5144.	2.2	9

#	Article	IF	CITATIONS
145	Influence of dielectric inhomogeneities on the structure of charged nanoparticles in neutral polymer solutions. Soft Matter, 2018, 14, 3748-3759.	1.2	9
146	Influence of morphology of colloidal nanoparticle gels on ion transport and rheology. Journal of Chemical Physics, 2019, 150, 214903.	1.2	9
147	Influence of pore morphology on the diffusion of water in triblock copolymer membranes. Journal of Chemical Physics, 2020, 152, 014904.	1.2	9
148	Impact of Cation–Ligand Interactions on the Permselectivity of Ligand-Functionalized Polymer Membranes in Single and Mixed Salt Systems. Macromolecules, 2022, 55, 4821-4831.	2.2	9
149	Free Volumes and the Anomalous Self-Diffusivity of Attractive Colloids. Journal of Physical Chemistry B, 2006, 110, 5166-5169.	1.2	8
150	Modes of Interaction in Binary Blends of Hydrophobic Polyethers and Imidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Macromolecules, 2020, 53, 6519-6528.	2.2	8
151	Non-intuitive Trends in Flory–Huggins Interaction Parameters in Polyether-Based Polymers. Macromolecules, 2021, 54, 6670-6677.	2.2	8
152	Entanglements in Inhomogeneous Polymeric Phases. Macromolecules, 2002, 35, 9219-9231.	2.2	7
153	Aggregation Behavior of Rod–Coil–Rod Triblock Copolymers in a Coil-Selective Solvent. Journal of Physical Chemistry B, 2015, 119, 330-337.	1.2	7
154	RELATIONSHIP BETWEEN SHEAR VISCOSITY AND STRUCTURE OF A MODEL COLLOIDAL SUSPENSION. Chemical Engineering Communications, 2009, 197, 63-75.	1.5	6
155	Structure of Aggregating Rod Suspensions Under Combined Shear and Electric Fields. Macromolecules, 2009, 42, 7184-7193.	2.2	6
156	Computer Simulations of Dendrimer–Polyelectrolyte Complexes. Journal of Physical Chemistry B, 2014, 118, 10297-10310.	1.2	6
157	Direct Simulations of Phase Behavior of Mixtures of Oppositely Charged Proteins/Nanoparticles and Polyelectrolytes. Journal of Physical Chemistry B, 2020, 124, 10943-10951.	1.2	6
158	Correlations in Block Copolymers under Shear. Macromolecules, 2002, 35, 9847-9850.	2.2	5
159	Mechanisms of ion transport in lithium saltâ€doped polymeric ionic liquid electrolytes at higher salt concentrations. Journal of Polymer Science, 2022, 60, 199-213.	2.0	5
160	Long-time nonpreaveraged diffusivity and sedimentation velocity of clusters: Applications to micellar solutions. Physical Review E, 1999, 59, 2126-2140.	0.8	3
161	Comment on "Tail Stateâ€Assisted Charge Injection and Recombination at the Electronâ€Collecting Interface of P3HT:PCBM Bulkâ€Heterojunction Polymer Solar Cellsâ€, Advanced Energy Materials, 2013, 3, 1537-1538.	10.2	3
162	Normal Modes and Dielectric Spectra of Diblock Copolymers in Lamellar Phases. Macromolecules, 2016, 49, 2821-2831.	2.2	3

#	Article	IF	CITATIONS
163	On the relationship between the local segmental dynamics and the tagged monomer dynamics in lamellar phases of diblock copolymers. Journal of Chemical Physics, 2017, 147, 104901.	1.2	3
164	Influence of topographically patterned angled guidelines on directed self-assembly of block copolymers. Physical Review E, 2017, 96, 052501.	0.8	3
165	Instabilities in Block Copolymer Films Induced by Compressible Solvents. Journal of Physical Chemistry B, 2007, 111, 402-407.	1.2	2
166	Influence of Charge Regulation and Charge Heterogeneity on Complexation between Weak Polyelectrolytes and Weak Proteins Near Isoelectric Point. Macromolecular Theory and Simulations, 2021, 30, 2000054.	0.6	1