Hiroto Hatakeyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9047758/publications.pdf

Version: 2024-02-01

57 papers 4,053 citations

36 h-index 53 g-index

61 all docs

61 docs citations

61 times ranked

5602 citing authors

#	Article	IF	CITATIONS
1	A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 2011, 63, 152-160.	13.7	571
2	The Polyethyleneglycol Dilemma: Advantage and Disadvantage of PEGylation of Liposomes for Systemic Genes and Nucleic Acids Delivery to Tumors. Biological and Pharmaceutical Bulletin, 2013, 36, 892-899.	1.4	391
3	A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. Journal of Controlled Release, 2009, 139, 127-132.	9.9	238
4	Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials, 2011, 32, 4306-4316.	11.4	193
5	Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. Journal of Controlled Release, 2011, 153, 141-148.	9.9	189
6	Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. International Journal of Pharmaceutics, 2004, 281, 25-33.	5.2	152
7	Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Archives of Pharmacal Research, 2014, 37, 4-15.	6.3	144
8	Gene Silencing via RNAi and siRNA Quantification in Tumor Tissue Using MEND, a Liposomal siRNA Delivery System. Molecular Therapy, 2013, 21, 1195-1203.	8.2	112
9	Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials, 2011, 32, 5733-5742.	11.4	107
10	RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. Journal of Controlled Release, 2014, 173, 110-118.	9.9	103
11	2′-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nature Communications, 2014, 5, 3459.	12.8	103
12	A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nature Communications, 2016, 7, 11169.	12.8	100
13	A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. Journal of Controlled Release, 2016, 225, 183-191.	9.9	97
14	The effect of liposomal size on the targeted delivery of doxorubicin toÂlntegrin $\hat{l}\pm\nu\hat{l}^2$ 3-expressing tumor endothelial cells. Biomaterials, 2013, 34, 5617-5627.	11.4	96
15	Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. Journal of Controlled Release, 2012, 162, 225-232.	9.9	93
16	Lipid Envelope-Type Nanoparticle Incorporating a Multifunctional Peptide for Systemic siRNA Delivery to the Pulmonary Endothelium. ACS Nano, 2013, 7, 7534-7541.	14.6	89
17	The systemic administration of an anti-miRNA oligonucleotide encapsulated pH-sensitive liposome results in reduced level of hepatic microRNA-122 in mice. Journal of Controlled Release, 2014, 173, 43-50.	9.9	69
18	A Neutral Envelopeâ€Type Nanoparticle Containing pHâ€Responsive and SSâ€Cleavable Lipidâ€Like Material as a Carrier for Plasmid DNA. Advanced Healthcare Materials, 2013, 2, 1120-1125.	7.6	67

#	Article	IF	Citations
19	Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake. International Journal of Pharmaceutics, 2010, 396, 143-148.	5.2	62
20	An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials, 2014, 35, 7110-7120.	11.4	62
21	A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E-scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma. Journal of Controlled Release, 2015, 200, 97-105.	9.9	59
22	Relationship Between the Physicochemical Properties of Lipid Nanoparticles and the Quality of siRNA Delivery to Liver Cells. Molecular Therapy, 2016, 24, 788-795.	8.2	59
23	Novel pH-sensitive multifunctional envelope-type nanodevice for siRNA-based treatments for chronic HBV infection. Journal of Hepatology, 2016, 64, 547-555.	3.7	57
24	In vitro optimization of 2′-OMe-4′-thioribonucleoside–modified anti-microRNA oligonucleotides and its targeting delivery to mouse liver using a liposomal nanoparticle. Nucleic Acids Research, 2013, 41, 10659-10667.	14.5	49
25	Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors. International Journal of Pharmaceutics, 2016, 509, 178-187.	5.2	49
26	Intracellular stability of 2′-OMe-4′-thioribonucleoside modified siRNA leads to long-term RNAi effect. Nucleic Acids Research, 2012, 40, 5787-5793.	14.5	48
27	In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus Scientific Reports, 2014, 4, 4750.	3.3	47
28	<i>HSP70</i> Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer. Molecular Cancer Therapeutics, 2017, 16, 966-976.	4.1	47
29	Synthesis, Structure, and Biological Activity of Dumbbell-Shaped Nanocircular RNAs for RNA Interference. Bioconjugate Chemistry, 2011, 22, 2082-2092.	3.6	44
30	Efficient Short Interference RNA Delivery to Tumor Cells Using a Combination of Octaarginine, GALA and Tumor-Specific, Cleavable Polyethylene Glycol System. Biological and Pharmaceutical Bulletin, 2009, 32, 928-932.	1.4	43
31	Molecular Tuning of a Vitamin E-Scaffold pH-Sensitive and Reductive Cleavable Lipid-like Material for Accelerated in Vivo Hepatic siRNA Delivery. ACS Biomaterials Science and Engineering, 2015, 1, 834-844.	5.2	43
32	Advances in an active and passive targeting to tumor and adipose tissues. Expert Opinion on Drug Delivery, 2015, 12, 41-52.	5.0	43
33	An apolipoprotein E modified liposomal nanoparticle: Ligand dependent efficiency as a siRNA delivery carrier for mouse-derived brain endothelial cells. International Journal of Pharmaceutics, 2014, 465, 77-82.	5. 2	42
34	Improvement of Doxorubicin Efficacy Using Liposomal Anti-Polo-like Kinase 1 siRNA in Human Renal Cell Carcinomas. Molecular Pharmaceutics, 2014, 11, 2713-2719.	4.6	41
35	Hepatic Monoacylglycerol O-acyltransferase 1 as a Promising Therapeutic Target for Steatosis, Obesity, and Type 2 Diabetes. Molecular Therapy - Nucleic Acids, 2014, 3, e154.	5.1	40
36	Comparative Study of the Sensitivities of Cancer Cells to Doxorubicin, and Relationships between the Effect of the Drug-Efflux Pump P-gp. Biological and Pharmaceutical Bulletin, 2014, 37, 1926-1935.	1.4	38

#	Article	IF	CITATIONS
37	Antitumor and Antiangiogenic Effects of Aspirin-PC in Ovarian Cancer. Molecular Cancer Therapeutics, 2016, 15, 2894-2904.	4.1	37
38	Application of apolipoprotein E-modified liposomal nanoparticles as a carrier for delivering DNA and nucleic acid in the brain. International Journal of Nanomedicine, 2014, 9, 4267.	6.7	24
39	Size-dependent specific targeting and efficient gene silencing in peritoneal macrophages using a pH-sensitive cationic liposomal siRNA carrier. International Journal of Pharmaceutics, 2015, 495, 171-178.	5.2	23
40	A DNA Microarray-based Analysis of the Host Response to a Nonviral Gene Carrier: A Strategy for Improving the Immune Response. Molecular Therapy, 2011, 19, 1487-1498.	8.2	22
41	Role of CTGF in Sensitivity to Hyperthermia in Ovarian and Uterine Cancers. Cell Reports, 2016, 17, 1621-1631.	6.4	21
42	Poor outcome with anti-programmed death-ligand 1 (PD-L1) antibody due to poor pharmacokinetic properties in PD-1/PD-L1 blockade-sensitive mouse models., 2020, 8, e000400.		21
43	A new peptide motif present in the protective antigen of anthrax toxin exerts its efficiency on the cellular uptake of liposomes and applications for a dual-ligand system. International Journal of Pharmaceutics, 2011, 412, 106-114.	5.2	14
44	Global Comparison of Changes in the Number of Test-Positive Cases and Deaths by Coronavirus Infection (COVID-19) in the World. Journal of Clinical Medicine, 2020, 9, 1904.	2.4	14
45	Multifunctional Envelope-Type Nano Device: Evolution from Nonselective to Active Targeting System. Bioconjugate Chemistry, 2015, 26, 1266-1276.	3.6	13
46	Novel antiangiogenic therapy targeting biglycan using tumor endothelial cellâ€specific liposomal siRNA delivery system. Cancer Science, 2022, 113, 1855-1867.	3.9	12
47	Silencing of VEGFR2 by RGD-Modified Lipid Nanoparticles Enhanced the Efficacy of Anti-PD-1 Antibody by Accelerating Vascular Normalization and Infiltration of T Cells in Tumors. Cancers, 2020, 12, 3630.	3.7	11
48	Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. Methods in Molecular Biology, 2016, 1402, 189-197.	0.9	8
49	Delivery of Nucleic Acids and Gene Delivery. , 2011, , 411-444.		7
50	Ornithine and Tryptophan Analogs as Efficient Polycations for Short Interference RNA Delivery to Tumor Cells. Biological and Pharmaceutical Bulletin, 2010, 33, 1246-1249.	1.4	6
51	A Novel Nonviral Gene Delivery System: Multifunctional Envelope-Type Nano Device., 2009, 119, 197-230.		5
52	Determinants of Intestinal Availability for P-glycoprotein Substrate Drugs Estimated by Extensive Simulation With Mathematical Absorption Models. Journal of Pharmaceutical Sciences, 2017, 106, 2771-2779.	3.3	4
53	PEG dilemma- nucleic acids delivery to cancers by controlling biodistribution and intracellular trafficking. Drug Delivery System, 2016, 31, 293-299.	0.0	2
54	siRNA delivery by multifunctional envelope-type nano device (MEND). Drug Delivery System, 2010, 25, 590-597.	0.0	1

#	Article	IF	CITATIONS
55	529. Development of Novel Systemic Gene Delivery System for Cancer Therapy with Tumor-Specifically Cleavable PEG-Lipid. Molecular Therapy, 2006, 13, S203.	8.2	0
56	Effects on Metabolism in Astrocytes Caused by cGAMP, Which Imitates the Initial Stage of Brain Metastasis. International Journal of Molecular Sciences, 2021, 22, 9028.	4.1	0
57	Abstract 1406: Evoking potent RNAi response using novel 2′-OMe-phosphorodithioated modified siRNAs. , 2014, , .		0