Tomas Vinar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9047425/publications.pdf

Version: 2024-02-01

78	6 732	257450	91884
papers	6,732 citations	h-index	g-index
1 1 200			0
89	89	89	11159
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. Science, 2007, 316, 222-234.	12.6	1,283
2	The sequence and de novo assembly of the giant panda genome. Nature, 2010, 463, 311-317.	27.8	1,058
3	The Schistosoma japonicum genome reveals features of host–parasite interplay. Nature, 2009, 460, 345-351.	27.8	635
4	Comparative and demographic analysis of orang-utan genomes. Nature, 2011, 469, 529-533.	27.8	541
5	Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genetics, 2008, 4, e1000144.	3.5	529
6	Convergent evolution of the genomes of marine mammals. Nature Genetics, 2015, 47, 272-275.	21.4	392
7	The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biology, 2013, 14, R28.	9.6	276
8	The genome of the hydatid tapeworm Echinococcus granulosus. Nature Genetics, 2013, 45, 1168-1175.	21.4	260
9	The common marmoset genome provides insight into primate biology and evolution. Nature Genetics, 2014, 46, 850-857.	21.4	225
10	Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nature Communications, 2016, 7, 11693.	12.8	222
11	DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE, 2017, 12, e0178751.	2.5	186
12	The comparative genomics and complex population history of <i>Papio</i> baboons. Science Advances, 2019, 5, eaau6947.	10.3	115
13	Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Research, 2011, 39, 4202-4219.	14.5	69
14	Evolutionary genetics and implications of small size and twinning in callitrichine primates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1467-1472.	7.1	66
15	nGASP – the nematode genome annotation assessment project. BMC Bioinformatics, 2008, 9, 549.	2.6	61
16	Sequencing the genome of Marssonina brunnea reveals fungus-poplar co-evolution. BMC Genomics, 2012, 13, 382.	2.8	61
17	Massive programmed translational jumping in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5926-5931.	7.1	58
18	OPTIMAL SPACED SEEDS FOR HOMOLOGOUS CODING REGIONS. Journal of Bioinformatics and Computational Biology, 2004, 01, 595-610.	0.8	48

#	Article	IF	Citations
19	ExonHunter: a comprehensive approach to gene finding. Bioinformatics, 2005, 21, i57-i65.	4.1	45
20	Vector seeds: An extension to spaced seeds. Journal of Computer and System Sciences, 2005, 70, 364-380.	1.2	42
21	Positive selection on apoptosis related genes. FEBS Letters, 2010, 584, 469-476.	2.8	38
22	A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 2020, 9, .	6.4	37
23	A SARS-CoV-2 mutant from B.1.258 lineage with â^†H69/â^†V70 deletion in the Spike protein circulating in Central Europe in the fall 2020. Virus Genes, 2021, 57, 556-560.	1.6	27
24	Surveillance of SARS-CoV-2 lineage B.1.1.7 in Slovakia using a novel, multiplexed RT-qPCR assay. Scientific Reports, 2021, 11, 20494.	3.3	24
25	Population Genomic Analysis Reveals a Rich Speciation and Demographic History of Orang-utans (Pongo pygmaeus and Pongo abelii). PLoS ONE, 2013, 8, e77175.	2.5	23
26	Vector Seeds: An Extension to Spaced Seeds Allows Substantial Improvements in Sensitivity and Specificity. Lecture Notes in Computer Science, 2003, , 39-54.	1.3	22
27	DeepNano-blitz: a fast base caller for MinION nanopore sequencers. Bioinformatics, 2020, 36, 4191-4192.	4.1	21
28	Nanopore base calling on the edge. Bioinformatics, 2021, 37, 4661-4667.	4.1	20
29	How Big is that Genome? Estimating Genome Size and Coverage from k-mer Abundance Spectra. Lecture Notes in Computer Science, 2015, , 199-209.	1.3	18
30	Mosaicism in old trees and its patterns. Trees - Structure and Function, 2020, 34, 357-370.	1.9	17
31	Optimal Spaced Seeds for Hidden Markov Models, with Application to Homologous Coding Regions. Lecture Notes in Computer Science, 2003, , 42-54.	1.3	16
32	Nanopore sequencing of SARS-CoV-2: Comparison of short and long PCR-tiling amplicon protocols. PLoS ONE, 2021, 16, e0259277.	2.5	16
33	Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Current Genetics, 2019, 65, 539-560.	1.7	14
34	Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine, 2022, 76, 103818.	6.1	14
35	Homology search for genes. Bioinformatics, 2007, 23, i97-i103.	4.1	13
36	The most probable annotation problem in HMMs and its application to bioinformatics. Journal of Computer and System Sciences, 2007, 73, 1060-1077.	1.2	13

#	Article	IF	CITATIONS
37	Finding genes in Schistosoma japonicum: annotating novel genomes with help of extrinsic evidence. Nucleic Acids Research, 2009, 37, e52-e52.	14.5	13
38	Alu Insertion Polymorphisms as Evidence for Population Structure in Baboons. Genome Biology and Evolution, 2017, 9, 2418-2427.	2.5	13
39	Papio Baboon Species Indicative Alu Elements. Genome Biology and Evolution, 2017, 9, 1788-1796.	2.5	12
40	CAGE: Combinatorial Analysis of Gene-Cluster Evolution. Journal of Computational Biology, 2010, 17, 1227-1242.	1.6	10
41	Simplifying Flow Networks. Lecture Notes in Computer Science, 2000, , 192-201.	1.3	10
42	Reconstructing the Evolutionary History of Complex Human Gene Clusters. , 2008, , 29-49.		9
43	Palindrome recognition using a multidimensional tape. Theoretical Computer Science, 2003, 302, 475-480.	0.9	8
44	Finding hidden independent sets in interval graphs. Theoretical Computer Science, 2004, 310, 287-307.	0.9	8
45	Reconstructing Histories of Complex Gene Clusters on a Phylogeny. Journal of Computational Biology, 2010, 17, 1267-1279.	1.6	8
46	On-Line Viterbi Algorithm for Analysis of Long Biological Sequences. Lecture Notes in Computer Science, 2007, , 240-251.	1.3	8
47	Evolutionary History Reconstruction for Mammalian Complex Gene Clusters. Journal of Computational Biology, 2009, 16, 1051-1070.	1.6	7
48	A Practical Algorithm for Ancestral Rearrangement Reconstruction. Lecture Notes in Computer Science, 2011, , 163-174.	1.3	7
49	Advances in Hidden Markov Models for Sequence Annotation. , 2007, , 55-91.		6
50	GAML: genome assembly by maximum likelihood. Algorithms for Molecular Biology, 2015, 10, 18.	1.2	6
51	RNA motif search with data-driven element ordering. BMC Bioinformatics, 2016, 17, 216.	2.6	6
52	Probabilistic approaches to alignment with tandem repeats. Algorithms for Molecular Biology, 2014, 9, 3.	1,2	4
53	Discovery of RNA Motifs Using a Computational Pipeline that Allows Insertions in Paired Regions and Filtering of Candidate Sequences. Methods in Molecular Biology, 2012, 848, 145-158.	0.9	4
54	Sharper Upper and Lower Bounds for an Approximation Scheme for Consensus-Pattern. Lecture Notes in Computer Science, 2005, , 1-10.	1.3	4

#	Article	IF	Citations
55	Efficient routing in carrier-based mobile networks. Theoretical Computer Science, 2013, 509, 113-121.	0.9	3
56	Routing in Carrier-Based Mobile Networks. Lecture Notes in Computer Science, 2011, , 222-233.	1.3	3
57	Optimal DNA Signal Recognition Models with a Fixed Amount of Intrasignal Dependency. Lecture Notes in Computer Science, 2003, , 78-94.	1.3	2
58	Fast computation of a string duplication history under no-breakpoint-reuse. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130133.	3.4	2
59	Draft Genome Sequence of an Obligate Psychrophilic Yeast, Candida psychrophila NRRL Y-17665 T. Genome Announcements, 2017, 5, .	0.8	2
60	Predicting Gene Structures from Multiple RT-PCR Tests. Lecture Notes in Computer Science, 2009, , $181-193$.	1.3	2
61	Reconstructing Histories of Complex Gene Clusters on a Phylogeny. Lecture Notes in Computer Science, 2009, , 150-163.	1.3	2
62	A Better Method for Length Distribution Modeling in HMMs and Its Application to Gene Finding. Lecture Notes in Computer Science, 2002, , 190-202.	1.3	2
63	Isometric gene tree reconciliation revisited. Algorithms for Molecular Biology, 2017, 12, 17.	1.2	1
64	Genome Sequence of Flavor-Producing Yeast Saprochaete suaveolens NRRL Y-17571. Microbiology Resource Announcements, 2019, 8, .	0.6	1
65	Genome Sequence of an Arthroconidial Yeast, Saprochaete fungicola CBS 625.85. Microbiology Resource Announcements, 2019, 8, .	0.6	1
66	Genome Sequence of the Yeast <i>Saprochaete ingens</i> CBS 517.90. Microbiology Resource Announcements, 2019, 8, .	0.6	1
67	Inferring the Recent Duplication History of a Gene Cluster. Lecture Notes in Computer Science, 2009, , 111-125.	1.3	1
68	The Highest Expected Reward Decoding for HMMs with Application to Recombination Detection. Lecture Notes in Computer Science, 2010, , 164-176.	1.3	1
69	Dynamic Pooling Improves Nanopore Base Calling Accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	3.0	1
70	Transcriptome and proteome profiling reveals complex adaptations of Candida parapsilosis cells assimilating hydroxyaromatic carbon sources. PLoS Genetics, 2022, 18, e1009815.	3.5	1
71	The Most Probable Labeling Problem in HMMs and Its Application to Bioinformatics. Lecture Notes in Computer Science, 2004, , 426-437.	1.3	0
72	Fast Computation of a String Duplication History under No-Breakpoint-Reuse. Lecture Notes in Computer Science, 2011, , 144-155.	1.3	0

TOMAS VINAR

#	Article	IF	CITATIONS
73	Sequence annotation with HMMs: New problems and their complexity. Information Processing Letters, 2015, 115, 635-639.	0.6	0
74	Fishing in Read Collections: Memory Efficient Indexing for Sequence Assembly. Lecture Notes in Computer Science, 2015, , 188-198.	1.3	0
75	Isometric Gene Tree Reconciliation Revisited. Lecture Notes in Computer Science, 2016, , 40-51.	1.3	O
76	Probabilistic Models of k-mer Frequencies (Extended Abstract). Lecture Notes in Computer Science, 2021, , 227-236.	1.3	0
77	Automated Segmentation of DNA Sequences with Complex Evolutionary Histories. Lecture Notes in Computer Science, $2011, 1-13$.	1.3	0
78	Probabilistic Approaches to Alignment with Tandem Repeats. Lecture Notes in Computer Science, 2013, , 287-299.	1.3	O