Liang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9047300/publications.pdf

Version: 2024-02-01

61984 42399 12,446 94 43 92 citations h-index g-index papers 96 96 96 13623 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. Materials, 2022, 15, 1053.	2.9	17
2	Suppressing thermal quenching of lead halide perovskite nanocrystals by constructing a wide-bandgap surface layer for achieving thermally stable white light-emitting diodes. Chemical Science, 2022, 13, 3719-3727.	7.4	25
3	Simultaneous reduction and sequestration of hexavalent chromium by magnetic \hat{l}^2 -Cyclodextrin stabilized Fe3S4. Journal of Hazardous Materials, 2022, 431, 128592.	12.4	28
4	Stable Leadâ€Free Tin Halide Perovskite with Operational Stability >1200 h by Suppressing Tin(II) Oxidation. Angewandte Chemie, 2022, 134, .	2.0	2
5	Stable Leadâ€Free Tin Halide Perovskite with Operational Stability >1200 h by Suppressing Tin(II) Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
6	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie, 2021, 133, 7564-7577.	2.0	16
7	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie - International Edition, 2021, 60, 7488-7501.	13.8	80
8	1,3-Dichloropropene and chloropicrin emission reduction using a flexible CuInS2/ZnS:Al-TiO2 photocatalytic film. Environmental Science and Pollution Research, 2021, 28, 6980-6989.	5 . 3	0
9	Confined Synthesis of Stable and Uniform CsPbBr ₃ Nanocrystals with High Quantum Yield up to 90% by High Temperature Solidâ€State Reaction. Advanced Optical Materials, 2021, 9, 2002130.	7.3	40
10	Integrated solar cells with nonâ€toxic inorganic nanocrystals and polymer bulk heterojunction. Applied Surface Science Advances, 2021, 3, 100052.	6.8	2
11	Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nature Photonics, 2021, 15, 379-385.	31.4	260
12	Band Gap Engineering toward Wavelength Tunable CsPbBr ₃ Nanocrystals for Achieving Rec. 2020 Displays. Chemistry of Materials, 2021, 33, 3575-3584.	6.7	32
13	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
14	23.6: Invited Paper: Enhancing the Stability and Efficiency of Perovskite Nanocrystals Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 306-306.	0.3	0
15	Evenly distribution of amorphous iron sulfides on reconstructed Mg-Al hydrotalcites for improving Cr(VI) removal efficiency. Chemical Engineering Journal, 2021, 417, 129228.	12.7	17
16	Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3HT. Chemical Engineering Journal, 2021, 419, 129543.	12.7	58
17	Narrow-Band Violet-Light-Emitting Diodes Based on Stable Cesium Lead Chloride Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 3545-3554.	17.4	39
18	CsPbBr ₃ Nanocrystal Light-Emitting Diodes with Efficiency up to 13.4% Achieved by Careful Surface Engineering and Device Engineering. Journal of Physical Chemistry C, 2021, 125, 3110-3118.	3.1	29

#	Article	IF	CITATIONS
19	Removal and recovery of chloride ions in concentrated leachate by Bi(III) containing oxides quantum dots/two-dimensional flakes. Journal of Hazardous Materials, 2020, 382, 121041.	12.4	27
20	A novel approach to coat silica on quantum dots: Forcing decomposition of tetraethyl orthosilicate in toluene at high temperature. Journal of Alloys and Compounds, 2020, 817, 152698.	5.5	7
21	Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chemistry of Materials, 2020, 32, 308-314.	6.7	57
22	Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nature Communications, 2020, 11, 31.	12.8	185
23	Large-scale fabrication of upconversion/quantum dots photocatalyst film by a facile spin-coating method. Journal of Solid State Chemistry, 2020, 282, 121092.	2.9	4
24	Synthesis of lead halide perovskite nanocrystals by melt crystallization in halide salts. Chemical Communications, 2020, 56, 11291-11294.	4.1	12
25	Enhancing the performance of LARP-synthesized CsPbBr ₃ nanocrystal LEDs by employing a dual hole injection layer. RSC Advances, 2020, 10, 17653-17659.	3.6	13
26	Encapsulation of CsPbBr3 perovskite quantum dots into PPy conducting polymer: Exceptional water stability and enhanced charge transport property. Applied Surface Science, 2020, 526, 146735.	6.1	41
27	Stability enhancement of leadâ€free CsSnI ₃ perovskite photodetector with reductive ascorbic acid additive. InformaÄnÃ-Materiály, 2020, 2, 577-584.	17.3	56
28	Bifunctional Passivation Strategy to Achieve Stable CsPbBr ₃ Nanocrystals with Drastically Reduced Thermal-Quenching. Journal of Physical Chemistry Letters, 2020, 11, 993-999.	4.6	32
29	High-efficiency perovskite nanocrystal light-emitting diodes <i>via</i> decorating NiO _x on the nanocrystal surface. Nanoscale, 2020, 12, 8711-8719.	5.6	23
30	Surface Oxidation of Quantum Dots to Improve the Device Performance of Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28424-28430.	3.1	12
31	Surface Ligand Engineering toward Brightly Luminescent and Stable Cesium Lead Halide Perovskite Nanoplatelets for Efficient Blue-Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 26161-26169.	3.1	59
32	Critical role of metal ions in surface engineering toward brightly luminescent and stable cesium lead bromide perovskite quantum dots. Nanoscale, 2019, 11, 2602-2607.	5.6	33
33	Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chemical Science, 2019, 10, 6683-6688.	7.4	9
34	Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Research, 2019, 12, 1461-1465.	10.4	56
35	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	39.5	831
36	Improving the Stability of CsPbBr3 Perovskite Nanocrystals by Peroxides Post-treatment. Frontiers in Materials, 2019, 6, .	2.4	9

#	Article	IF	CITATIONS
37	Postsynthesis Potassiumâ€Modification Method to Improve Stability of CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2018, 6, 1701106.	7.3	95
38	A novel method for the sequential removal and separation of multiple heavy metals from wastewater. Journal of Hazardous Materials, 2018, 342, 617-624.	12.4	143
39	Synthesis of novel magnetic sulfur-doped Fe3O4 nanoparticles for efficient removal of Pb(II). Science China Chemistry, 2018, 61, 164-171.	8.2	10
40	Removal of arsenic(<scp>v</scp>) from aqueous solutions using sulfur-doped Fe ₃ O ₄ nanoparticles. RSC Advances, 2018, 8, 40804-40812.	3.6	22
41	Enhancing the stability of CsPbBr3 nanocrystals by sequential surface adsorption of S2â^ and metal ions. Chemical Communications, 2018, 54, 9345-9348.	4.1	33
42	Effect of the Electronic Structure on the Stability of CdSe/CdS and CdSe/CdS/ZnS Quantum-Dot Phosphors Incorporated into a Silica/Alumina Monolith. ACS Applied Nano Materials, 2018, 1, 3086-3090.	5.0	9
43	Postsynthesis Phase Transformation for CsPbBr ₃ /Rb ₄ PbBr ₆ Core/Shell Nanocrystals with Exceptional Photostability. ACS Applied Materials & Diterfaces, 2018, 10, 23303-23310.	8.0	98
44	Hydrofluoroethers as orthogonal solvents for all-solution processed perovskite quantum-dot light-emitting diodes. Nano Energy, 2018, 51, 358-365.	16.0	40
45	Morphology Evolution and Degradation of CsPbBr ₃ Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Applied Materials & Interfaces, 2017, 9, 7249-7258.	8.0	314
46	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie, 2017, 129, 8246-8250.	2.0	153
47	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie - International Edition, 2017, 56, 8134-8138.	13.8	355
48	Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8, 1138.	12.8	374
49	Efficient removal of Pb(<scp>ii</scp>) from water using magnetic Fe ₃ S ₄ /reduced graphene oxide composites. Journal of Materials Chemistry A, 2017, 5, 19333-19342.	10.3	72
50	Preparation of CaF 2 /TiO 2 /Ln 2 Ti 2 O 7 (Ln = Er, Tm, Yb) based magnetite near-infrared photocatalyst supported on waste ferrite. Materials Research Bulletin, 2017, 86, $107-112$.	5.2	5
51	Boosting photocatalytic performance and stability of CulnS2/ZnS-TiO2 heterostructures via sol-gel processed integrate amorphous titania gel. Applied Catalysis B: Environmental, 2017, 204, 403-410.	20.2	32
52	Enhancing the Stability of CH ₃ NH ₃ PbBr ₃ Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless―Toluene. Journal of the American Chemical Society, 2016, 138, 5749-5752.	13.7	501
53	Optimized synthesis of CuInS ₂ /ZnS:Al–TiO ₂ nanocomposites for 1,3-dichloropropene photodegradation. RSC Advances, 2016, 6, 77777-77785.	3.6	6
54	Stable and Flexible CuInS ₂ /ZnS:Al-TiO ₂ Film for Solar-Light-Driven Photodegradation of Soil Fumigant. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20048-20056.	8.0	20

#	Article	IF	CITATIONS
55	A general non-CH $<$ sub $>$ 3 $<$ /sub $>$ NH $<$ sub $>$ 3 $<$ /sub $>$ X (X = I, Br) one-step deposition of CH $<$ sub $>$ 3 $<$ /sub $>$ NH $<$ sub $>$ 3 $<$ /sub $>$ PbX $<$ sub $>$ 3 $<$ /sub $>$ perovskite for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3245-3248.	10.3	47
56	Size-dependent nanocrystal sorbent for copper removal from water. Chemical Engineering Journal, 2016, 284, 565-570.	12.7	28
57	Metal recovery based magnetite near-infrared photocatalyst with broadband spectrum utilization property. Applied Catalysis B: Environmental, 2016, 181, 456-464.	20.2	26
58	Non-blinking (Zn)CulnS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach. Scientific Reports, 2015, 5, 15227.	3.3	52
59	Highly stable CulnS ₂ @ZnS:Al core@shell quantum dots: the role of aluminium self-passivation. Chemical Communications, 2015, 51, 8757-8760.	4.1	44
60	Tuning emission and Stokes shift of CdS quantum dots via copper and indium co-doping. RSC Advances, 2015, 5, 628-634.	3.6	17
61	Synthesis of highly photo-stable CuInS2/ZnS core/shell quantum dots. Optical Materials, 2015, 47, 56-61.	3 . 6	23
62	\hat{l}^2 -Cyclodextrin stabilized magnetic Fe ₃ S ₄ nanoparticles for efficient removal of Pb(<scp>ii</scp>). Journal of Materials Chemistry A, 2015, 3, 15755-15763.	10.3	92
63	General Method for the Synthesis of Ultrastable Core/Shell Quantum Dots by Aluminum Doping. Journal of the American Chemical Society, 2015, 137, 12430-12433.	13.7	91
64	CaF ₂ -Based Near-Infrared Photocatalyst Using the Multifunctional CaTiO ₃ Precursors as the Calcium Source. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20170-20178.	8.0	33
65	Magnetic Biochar Decorated with ZnS Nanocrytals for Pb (II) Removal. ACS Sustainable Chemistry and Engineering, 2015, 3, 125-132.	6.7	180
66	Preparation of Thermo-Sensitive Magnetic Cationic Hydrogel for the Adsorption of Reactive Red Dye. Journal of Dispersion Science and Technology, 2015, 36, 714-722.	2.4	5
67	Ultraeffective ZnS Nanocrystals Sorbent for Mercury(II) Removal Based on Size-Dependent Cation Exchange. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18026-18032.	8.0	7 5
68	Generalized Synthesis of Hybrid Metal–Semiconductor Nanostructures Tunable from the Visible to the Infrared. ACS Nano, 2012, 6, 3832-3840.	14.6	99
69	Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. Journal of the American Chemical Society, 2011, 133, 1176-1179.	13.7	671
70	ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 2011, 56, 175-287.	32.8	1,134
71	Solutionâ€Based In Situ Synthesis and Fabrication of Ultrasensitive CdSe Photoconductors. Advanced Materials, 2010, 22, 5366-5369.	21.0	14
72	Solution-Processed Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CulnS ₂ Nanocrystals. Journal of the American Chemical Society, 2010, 132, 22-23.	13.7	178

#	Article	IF	CITATIONS
73	Comparative photoluminescence study of close-packed and colloidal InP/ZnS quantum dots. Applied Physics Letters, 2010, 96, 073102.	3.3	44
74	Time-resolved photoluminescence study of ^{CulnS} ₂ / ^{ZnS} nanocrystals. Journal of Family Business Management, 2010, 1, 025007.	3.4	36
75	Core/Shell Semiconductor Nanocrystals. Small, 2009, 5, 154-168.	10.0	1,746
76	Effect of Poly(ethylene glycol) Length on the in Vivo Behavior of Coated Quantum Dots. Langmuir, 2009, 25, 3040-3044.	3.5	142
77	Highly Luminescent CulnS ₂ /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging. Chemistry of Materials, 2009, 21, 2422-2429.	6.7	644
78	Time-resolved photoluminescence measurements of InP/ZnS quantum dots. Journal of Physics: Conference Series, 2009, 187, 012014.	0.4	11
79	Economic Synthesis of High Quality InP Nanocrystals Using Calcium Phosphide as the Phosphorus Precursor. Chemistry of Materials, 2008, 20, 2621-2623.	6.7	126
80	One-pot Synthesis of Highly Luminescent InP/ZnS Nanocrystals without Precursor Injection. Journal of the American Chemical Society, 2008, 130, 11588-11589.	13.7	407
81	Microwave-Assisted Aqueous Synthesis:Â A Rapid Approach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots. Journal of Physical Chemistry B, 2006, 110, 9034-9040.	2.6	165
82	Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta, 2006, 70, 397-402.	5.5	117
83	Coupling Fluorescence Correlation Spectroscopy with Microchip Electrophoresis to Determine the Effective Surface Charge of Water-Soluble Quantum Dots. Small, 2006, 2, 534-538.	10.0	36
84	Aqueous synthesis of CdTe@FeOOH and CdTe@Ni(OH)2 composited nanoparticles. Journal of Solid State Chemistry, 2006, 179, 1814-1820.	2.9	12
85	Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. Journal of Luminescence, 2006, 116 , 59 - 66 .	3.1	183
86	Rapid preparation of spinel Co3O4 nanocrystals in aqueous phase by microwave irradiation. Materials Research Bulletin, 2006, 41, 2286-2290.	5.2	24
87	A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET). Angewandte Chemie - International Edition, 2006, 45, 5140-5143.	13.8	224
88	Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium. Electrophoresis, 2006, 27, 1341-1346.	2.4	73
89	Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy. Analytica Chimica Acta, 2005, 546, 46-51.	5.4	53
90	One-step and rapid synthesis of high quality alloyed quantum dots (CdSe–CdS) in aqueous phase by microwave irradiation with controllable temperature. Materials Research Bulletin, 2005, 40, 1726-1736.	5.2	105

#	Article	IF	CITATION
91	Rapid Synthesis of Highly Luminescent CdTe Nanocrystals in the Aqueous Phase by Microwave Irradiation with Controllable Temperature ChemInform, 2005, 36, no.	0.0	0
92	CdTe@Co(OH)2 (Coreâ€"Shell) Nanoparticles: Aqueous Synthesis and Characterization ChemInform, 2005, 36, no.	0.0	0
93	CdTe@Co(OH)2(core–shell) nanoparticles: aqueous synthesis and characterization. Chemical Communications, 2005, , 4083.	4.1	38
94	Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chemical Communications, 2005, , 528.	4.1	246