Laura Ragona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9045223/publications.pdf Version: 2024-02-01

LAURA RACONA

#	Article	IF	CITATIONS
1	Molecular Basis of the Antiangiogenic Action of Rosmarinic Acid, a Natural Compound Targeting Fibroblast Growth Factorâ€2/FGFR Interactions. ChemBioChem, 2021, 22, 160-169.	2.6	11
2	Sodium fusidate prevents protein aggregation of silk fibroin and offers new perspectives for human lens material disaggregation. Biophysical Chemistry, 2021, 279, 106680.	2.8	4
3	Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Frontiers in Neuroscience, 2020, 14, 619667.	2.8	59
4	Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity. Molecular Neurobiology, 2019, 56, 1957-1971.	4.0	13
5	Biophysical and in Vivo Studies Identify a New Natural-Based Polyphenol, Counteracting Aβ Oligomerization in Vitro and Aβ Oligomer-Mediated Memory Impairment and Neuroinflammation in an Acute Mouse Model of Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 4462-4475.	3.5	23
6	Bile Acid Binding Protein Functionalization Leads to a Fully Synthetic Rhodopsin Mimic. Journal of Physical Chemistry Letters, 2019, 10, 2235-2243.	4.6	10
7	Silk Fibroinâ€Based Films Enhance Rhodamine 6G Emission in the Solid State: A Chemical–Physical Analysis of their Interactions for the Design of Highly Emissive Biomaterials. Macromolecular Chemistry and Physics, 2019, 220, 1800460.	2.2	5
8	Rhodamine binds to silk fibroin and inhibits its self-aggregation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 661-667.	2.3	9
9	Evidence of Molecular Interactions of Aβ1–42 with N-Terminal Truncated Beta Amyloids by NMR. ACS Chemical Neuroscience, 2017, 8, 759-765.	3.5	10
10	Unsaturated Long hain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization. Chemistry - A European Journal, 2017, 23, 9879-9887.	3.3	10
11	New ACE-Inhibitory Peptides from Hemp Seed (<i>Cannabis sativa</i> L.) Proteins. Journal of Agricultural and Food Chemistry, 2017, 65, 10482-10488.	5.2	64
12	Electrospun Lipid Binding Proteins Composite Nanofibers with Antibacterial Properties. Macromolecular Bioscience, 2017, 17, 1600300.	4.1	10
13	Integrating computational and chemical biology tools in the discovery of antiangiogenic small molecule ligands of FGF2 derived from endogenous inhibitors. Scientific Reports, 2016, 6, 23432.	3.3	20
14	The study of transient protein–nanoparticle interactions by solution NMR spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 102-114.	2.3	55
15	Lipid binding protein response to a bile acid library: a combined NMR and statistical approach. FEBS Journal, 2015, 282, 4094-4113.	4.7	6
16	The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 95, 1-10.	2.2	8
17	Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy. Cancer Cell, 2015, 28, 225-239.	16.8	111
18	A long pentraxin-3-derived pentapeptide for the therapy of FGF8b-driven steroid hormone-regulated cancers. Oncotarget, 2015, 6, 13790-13802.	1.8	27

Laura Ragona

#	Article	IF	CITATIONS
19	Investigating the Dynamic Aspects of Drug-Protein Recognition through a Combination of MD and NMR Analyses: Implications for the Development of Protein-Protein Interaction Inhibitors. PLoS ONE, 2014, 9, e97153.	2.5	11
20	The role of dynamics in modulating ligand exchange in intracellular lipid binding proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1268-1278.	2.3	27
21	Encapsulation of a Rhodamine Dye within a Bile Acid Binding Protein: Toward Water Processable Functional Bio Host–Guest Materials. Biomacromolecules, 2013, 14, 3549-3556.	5.4	11
22	BILE ACID BINDING PROTEIN: A VERSATILE HOST OF SMALL HYDROPHOBIC LIGANDS FOR APPLICATIONS IN THE FIELDS OF MRI CONTRAST AGENTS AND BIO-NANOMATERIALS. Computational and Structural Biotechnology Journal, 2013, 6, e201303021.	4.1	9
23	A Disulfide Bridge Allows for Siteâ€Selective Binding in Liver Bile Acid Binding Protein Thereby Stabilising the Orientation of Key Amino Acid Side Chains. Chemistry - A European Journal, 2012, 18, 2857-2866.	3.3	13
24	Direct and Allosteric Inhibition of the FGF2/HSPGs/FGFR1 Ternary Complex Formation by an Antiangiogenic, Thrombospondin-1-Mimic Small Molecule. PLoS ONE, 2012, 7, e36990.	2.5	40
25	Simulation of urea-induced protein unfolding: A lesson from bovine β-lactoglobulin. Journal of Molecular Graphics and Modelling, 2011, 30, 24-30.	2.4	13
26	Fibroblast growth factor 2â€antagonist activity of a longâ€pentraxin 3â€derived antiâ€angiogenic pentapeptide. Journal of Cellular and Molecular Medicine, 2010, 14, 2109-2121.	3.6	46
27	Siteâ€5pecific Investigation of the Steadyâ€5tate Kinetics and Dynamics of the Multistep Binding of Bile Acid Molecules to a Lipid Carrier Protein. Chemistry - A European Journal, 2010, 16, 11300-11310.	3.3	19
28	Combined in Silico and Experimental Approach for Drug Design: The Binding Mode of Peptidic and Nonâ€Peptidic Inhibitors to Hsp90 Nâ€Terminal Domain. Chemical Biology and Drug Design, 2010, 76, 382-391.	3.2	10
29	Non-peptidic Thrombospondin-1 Mimics as Fibroblast Growth Factor-2 Inhibitors. Journal of Biological Chemistry, 2010, 285, 8733-8742.	3.4	70
30	Targeting tumor angiogenesis with TSP-1-based compounds: rational design of antiangiogenic mimetics of endogenous inhibitors. Oncotarget, 2010, 1, 662-673.	1.8	57
31	Targeting tumor angiogenesis with TSP-1-based compounds: rational design of antiangiogenic mimetics of endogenous inhibitors. Oncotarget, 2010, 1, 662-73.	1.8	33
32	Disulfide bridge regulates ligandâ€binding site selectivity in liver bile acidâ€binding proteins. FEBS Journal, 2009, 276, 6011-6023.	4.7	16
33	New insights into the molecular interaction of the C-terminal sequence of CXCL4 with fibroblast growth factor-2. Biochemical and Biophysical Research Communications, 2009, 382, 26-29.	2.1	12
34	NMR unfolding studies on a liver bile acid binding protein reveal a global two-state unfolding and localized singular behaviors. Archives of Biochemistry and Biophysics, 2009, 481, 21-29.	3.0	21
35	Identification and functional characterization of the bile acid transport proteins in nonâ€mammalian ileum and mammalian liver. Proteins: Structure, Function and Bioinformatics, 2008, 70, 462-472.	2.6	26
36	Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1889-1898.	2.6	18

#	Article	IF	CITATIONS
37	Solution Structure of the Supramolecular Adduct between a Liver Cytosolic Bile Acid Binding Protein and a Bile Acid-Based Gadolinium(III)-Chelate, a Potential Hepatospecific Magnetic Resonance Imaging Contrast Agent. Journal of Medicinal Chemistry, 2008, 51, 6782-6792.	6.4	18

Crystal structure of the anticarcinogenic Bowmanâ \in "Birk inhibitor from snail medic (Medicago) Tj ETQq0 0 0 rgBT $\frac{10}{2.8}$ verlock 10 Tf 50 70 $\frac{10}{2.8}$

39	Structural and Dynamic Determinants of Ligand Binding in the Ternary Complex of Chicken Liver Bile Acid Binding Protein with Two Bile Salts Revealed by NMR,. Biochemistry, 2007, 46, 12557-12567.	2.5	36
40	NMR Structural Studies of the Supramolecular Adducts between a Liver Cytosolic Bile Acid Binding Protein and Gadolinium(III)-Chelates Bearing Bile Acids Residues:  Molecular Determinants of the Binding of a Hepatospecific Magnetic Resonance Imaging Contrast Agent. Journal of Medicinal Chemistry, 2007, 50, 5257-5268.	6.4	17
41	NMRâ€based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids. Proteins: Structure, Function and Bioinformatics, 2007, 69, 177-191.	2.6	27
42	NMR Dynamic Studies Suggest that Allosteric Activation Regulates Ligand Binding in Chicken Liver Bile Acid-binding Protein. Journal of Biological Chemistry, 2006, 281, 9697-9709.	3.4	50
43	MM/PBSA analysis of molecular dynamics simulations of bovine β-lactoglobulin: Free energy gradients in conformational transitions?. Proteins: Structure, Function and Bioinformatics, 2005, 59, 91-103.	2.6	28
44	Determinants of protein stability and folding: Comparative analysis of beta-lactoglobulins and liver basic fatty acid binding protein. Proteins: Structure, Function and Bioinformatics, 2005, 61, 366-376.	2.6	20
45	Porcine beta-lactoglobulin chemical unfolding: Identification of a non-native α-helical intermediate. Proteins: Structure, Function and Bioinformatics, 2004, 58, 70-79.	2.6	18
46	Heterologous expression of bovine and porcine β-lactoglobulins in Pichia pastoris: towards a comparative functional characterisation. Journal of Biotechnology, 2004, 109, 169-178.	3.8	8
47	Effects of the Medicago scutellata trypsin inhibitor (MsTI) on cisplatin-induced cytotoxicity in human breast and cervical cancer cells. Anticancer Research, 2004, 24, 227-33.	1.1	20
48	Competitive binding of fatty acids and the fluorescent probe 1-8-anilinonaphthalene sulfonate to bovine β-lactoglobulin. Protein Science, 2003, 12, 1596-1603.	7.6	103
49	Solution structure of chicken liver basic fatty acid binding protein. Journal of Biomolecular NMR, 2003, 25, 157-160.	2.8	15
50	NMR Solution Structure of Viscotoxin C1 from Viscum Album SpeciesColoratum ohwi: Toward a Structureâ `Function Analysis of Viscotoxinsâ€. Biochemistry, 2003, 42, 12503-12510.	2.5	30
51	EF Loop Conformational Change Triggers Ligand Binding in β-Lactoglobulins. Journal of Biological Chemistry, 2003, 278, 38840-38846.	3.4	67
52	Peptide Models of Folding Initiation Sites of Bovine β-Lactoglobulin: Identification of Nativelike Hydrophobic Interactions Involving G and H Strandsâ€. Biochemistry, 2002, 41, 2786-2796.	2.5	20
53	Dimerization, stability and electrostatic properties of porcine \hat{I}^2 -lactoglobulin. FEBS Journal, 2001, 268, 4477-4488.	0.2	16
54	NMR structural determination of viscotoxin A3 from Viscum album L Biochemical Journal, 2000, 350,	3.7	12

Laura Ragona

#	Article	IF	CITATIONS
55	NMR structural determination of viscotoxin A3 from Viscum album L Biochemical Journal, 2000, 350, 569-577.	3.7	45
56	Electrostatic properties of bovine ?-lactoglobulin. , 2000, 39, 317-330.		68
57	Bovine βâ€lactoglobulin: Interaction studies with palmitic acid. Protein Science, 2000, 9, 1347-1356.	7.6	105
58	Apparent chemical composition of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. International Journal of Food Science and Technology, 1999, 34, 543-556.	2.7	45
59	Some physico-chemical properties of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. International Journal of Food Science and Technology, 1999, 34, 587-601.	2.7	35
60	Unfolding and refolding of bovine β-lactoglobulin monitored by hydrogen exchange measurements 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 293, 953-969.	4.2	58
61	Monomeric bovine β-lactoglobulin adopts a β-barrel fold at pH 2. FEBS Letters, 1998, 436, 149-154.	2.8	82
62	NMR and CD studies on the conformation of a synthetic peptide containing epitopes of the human immunodeficiency virus 1 transmembrane protein gp41. Biopolymers, 1998, 38, 423-435.	2.4	3
63	Probing protein structure by solvent perturbation of NMR spectra: the surface accessibility of bovine pancreatic trypsin inhibitor. Biophysical Journal, 1997, 73, 382-396.	0.5	41
64	Identification of a conserved hydrophobic cluster in partially folded bovine β-lactoglobulin at pH 2. Folding & Design, 1997, 2, 281-290.	4.5	77
65	The design of a specific ligand of HIV gp120. , 1997, 3, 383-390.		3
66	Partially folded structure of monomeric bovine \hat{I}^2 -lactoglobulin. FEBS Letters, 1996, 381, 237-243.	2.8	103
67	Electrospray Mass Spectrometry: Complexation Between 1-Anilinonaphthalene-8-sulphonate and Proteins. Journal of Mass Spectrometry, 1996, 31, 1261-1264.	1.6	19
68	CD and NMR structural characterization of ceratotoxins, natural peptides with antimicrobial activity. Biopolymers, 1996, 39, 653-664.	2.4	6