List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9043687/publications.pdf Version: 2024-02-01

ALBERTO MUNOZ

#	Article	IF	CITATIONS
1	An update on vitamin D signaling and cancer. Seminars in Cancer Biology, 2022, 79, 217-230.	9.6	129
2	Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients, 2022, 14, 1448.	4.1	85
3	Pyramidal cell axon initial segment in Alzheimer´s disease. Scientific Reports, 2022, 12, .	3.3	7
4	Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. Journal of Experimental and Clinical Cancer Research, 2021, 40, 144.	8.6	26
5	Organoids and Colorectal Cancer. Cancers, 2021, 13, 2657.	3.7	26
6	Vitamin D differentially regulates colon stem cells in patientâ€derived normal and tumor organoids. FEBS Journal, 2020, 287, 53-72.	4.7	67
7	Wnt and Vitamin D at the Crossroads in Solid Cancer. Cancers, 2020, 12, 3434.	3.7	21
8	Vitamin D Effects on Cell Differentiation and Stemness in Cancer. Cancers, 2020, 12, 2413.	3.7	41
9	Comparative Study of Organoids from Patient-Derived Normal and Tumor Colon and Rectal Tissue. Cancers, 2020, 12, 2302.	3.7	37
10	Mechanisms of action of vitamin D in colon cancer. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 1-6.	2.5	94
11	Urothelial organoids originating from Cd49fhigh mouse stem cells display Notch-dependent differentiation capacity. Nature Communications, 2019, 10, 4407.	12.8	42
12	Vitamin D and Wnt3A have additive and partially overlapping modulatory effects on gene expression and phenotype in human colon fibroblasts. Scientific Reports, 2019, 9, 8085.	3.3	23
13	Fibroblast-Derived 3D Matrix System Applicable to Endothelial Tube Formation Assay. Journal of Visualized Experiments, 2019, , .	0.3	0
14	Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. Journal of Neuroscience, 2019, 39, 8900-8915.	3.6	10
15	Plocabulin Displays Strong Cytotoxic Activity in a Personalized Colon Cancer Patient-Derived 3D Organoid Assay. Marine Drugs, 2019, 17, 648.	4.6	31
16	The Golgi Apparatus of Neocortical Glial Cells During Hibernation in the Syrian Hamster. Frontiers in Neuroanatomy, 2019, 13, 92.	1.7	2
17	Slow Waves in Cortical Slices: How Spontaneous Activity is Shaped by Laminar Structure. Cerebral Cortex, 2019, 29, 319-335.	2.9	68
18	The human <i>PKP2</i> /plakophilinâ€⊋ gene is induced by Wnt/β atenin in normal and colon cancerâ€associated fibroblasts. International Journal of Cancer, 2018, 142, 792-804.	5.1	26

#	Article	IF	CITATIONS
19	Endothelial cell activation on 3D-matrices derived from PDGF-BB-stimulated fibroblasts is mediated by Snail1. Oncogenesis, 2018, 7, 76.	4.9	25
20	Modifications of the axon initial segment during the hibernation of the Syrian hamster. Brain Structure and Function, 2018, 223, 4307-4321.	2.3	6
21	Aryl Hydrocarbon Receptor Promotes Liver Polyploidization and Inhibits PI3K, ERK, and Wnt/β-Catenin Signaling. IScience, 2018, 4, 44-63.	4.1	26
22	Overview of Vitamin D Actions in Cancer. , 2018, , 711-742.		2
23	Vitamin D and Colon Cancer. , 2018, , 837-862.		6
24	MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images. Frontiers in Neuroanatomy, 2018, 12, 37.	1.7	6
25	Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut, 2017, 66, 1449-1462.	12.1	131
26	The endocrine vitamin D system in the gut. Molecular and Cellular Endocrinology, 2017, 453, 79-87.	3.2	93
27	Morphometric alterations of Golgi apparatus in Alzheimer's disease are related to tau hyperphosphorylation. Neurobiology of Disease, 2017, 97, 11-23.	4.4	24
28	Changes in neocortical and hippocampal microglial cells during hibernation. Brain Structure and Function, 2017, 223, 1881-1895.	2.3	8
29	Vitamin D and the Epithelial to Mesenchymal Transition. Stem Cells International, 2016, 2016, 1-11.	2.5	42
30	PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death and Disease, 2016, 7, e2311-e2311.	6.3	7
31	Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen $\hat{1}\pm1$ (VI). Oncogene, 2016, 35, 5224-5236.	5.9	58
32	SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene, 2016, 35, 2991-3003.	5.9	40
33	Changes in the Golgi Apparatus of Neocortical and Hippocampal Neurons in the Hibernating Hamster. Frontiers in Neuroanatomy, 2015, 9, 157.	1.7	19
34	Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget, 2015, 6, 5903-5917.	1.8	35
35	Cystatin D Locates in the Nucleus at Sites of Active Transcription and Modulates Gene and Protein Expression. Journal of Biological Chemistry, 2015, 290, 26533-26548.	3.4	23
36	Selective presence of a giant saccular organelle in the axon initial segment of a subpopulation of layer V pyramidal neurons. Brain Structure and Function, 2015, 220, 869-884.	2.3	11

#	Article	IF	CITATIONS
37	Interaction of vitamin D with membrane-based signaling pathways. Frontiers in Physiology, 2014, 5, 60.	2.8	44
38	Snail1 Expression Is Required for Sarcomagenesis. Neoplasia, 2014, 16, 413-421.	5.3	24
39	SPROUTY2 is a β-catenin and FOXO3a target gene indicative of poor prognosis in colon cancer. Oncogene, 2014, 33, 1975-1985.	5.9	26
40	Wnt Pathway at a Glance: From the Deep of the Crypts to the Current Ways of Targeting. , 2014, , 85-106.		1
41	Vitamin D Is a Multilevel Repressor of Wnt/b-Catenin Signaling in Cancer Cells. Cancers, 2013, 5, 1242-1260.	3.7	116
42	c-Jun N-Terminal Kinase Phosphorylation Is a Biomarker of Plitidepsin Activity. Marine Drugs, 2013, 11, 1677-1692.	4.6	10
43	Colocalization of Â-actinin and Synaptopodin in the Pyramidal Cell Axon Initial Segment. Cerebral Cortex, 2012, 22, 1648-1661.	2.9	24
44	MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Human Molecular Genetics, 2012, 21, 2157-2165.	2.9	142
45	Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle, 2012, 11, 1081-1089.	2.6	112
46	Vitamin D and colon cancer. Endocrine-Related Cancer, 2012, 19, R51-R71.	3.1	100
47	Plasma 25-Hydroxyvitamin D3 and Bladder Cancer Risk According to Tumor Stage and FGFR3 Status: A Mechanism-Based Epidemiological Study. Journal of the National Cancer Institute, 2012, 104, 1897-1904.	6.3	30
48	Effects of Amyloid-β Plaque Proximity on the Axon Initial Segment of Pyramidal Cells. Journal of Alzheimer's Disease, 2012, 29, 841-852.	2.6	27
49	Synthesis and Biological Evaluation of 1α,25-Dihydroxyvitamin D ₃ Analogues with a Long Side Chain at C12 and Short C17 Side Chains. Journal of Medicinal Chemistry, 2012, 55, 8642-8656.	6.4	18
50	β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nature Medicine, 2012, 18, 892-901.	30.7	336
51	Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons. PLoS ONE, 2012, 7, e48557.	2.5	38
52	Design, Synthesis, Evaluation, and Structure of Vitaminâ€D Analogues with Furan Side Chains. Chemistry - A European Journal, 2012, 18, 603-612.	3.3	14
53	Synthesis and Biological Evaluation of 1α,25-Dihydroxyvitamin D ₃ Analogues Hydroxymethylated at C-26. Journal of Medicinal Chemistry, 2011, 54, 3950-3962.	6.4	11
54	Casein kinase 2 and microtubules control axon initial segment formation. Molecular and Cellular Neurosciences, 2011, 46, 222-234.	2.2	42

#	Article	IF	CITATIONS
55	In vitro maturation of the cisternal organelle in the hippocampal neuron's axon initial segment. Molecular and Cellular Neurosciences, 2011, 48, 104-116.	2.2	30
56	Proteomic analysis of 1α,25-Dihydroxyvitamin D3 action on human colon cancer cells reveals a link to splicing regulation. Journal of Proteomics, 2011, 75, 384-397.	2.4	37
57	Synthesis, Structure, and Biological Activity of desâ€5ide Chain Analogues of 11±,25â€Dihydroxyvitaminâ€D ₃ with Substituents at C18. ChemMedChem, 2011, 6, 788-793.	3.2	12
58	KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Human Molecular Genetics, 2011, 20, 4655-4665.	2.9	145
59	Vitamin D and Wnt/β-Catenin Signaling. , 2011, , 235-250.		1
60	Vitamin D Receptor Deficiency Enhances Wnt/β-Catenin Signaling and Tumor Burden in Colon Cancer. PLoS ONE, 2011, 6, e23524.	2.5	127
61	Vitamin D: Proteases, protease inhibitors and cancer. Cell Cycle, 2010, 9, 32-37.	2.6	37
62	Aromatase expression in the normal and epileptic human hippocampus. Brain Research, 2010, 1315, 41-52.	2.2	52
63	SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. Oncogene, 2010, 29, 4800-4813.	5.9	63
64	Novel Snail1 Target Proteins in Human Colon Cancer Identified by Proteomic Analysis. PLoS ONE, 2010, 5, e10221.	2.5	29
65	Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer. Molecular Cancer, 2010, 9, 170.	19.2	61
66	CD-ring modified vitamin D3 analogs and their superagonistic action. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 417-419.	2.5	19
67	The transcription factors Snail1 and Snail2 repress vitamin D receptor during colon cancer progression. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 106-109.	2.5	49
68	The effects of 1,25-dihydroxyvitamin D3 on colon cancer cells depend on RhoA-ROCK-p38MAPK-MSK signaling. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 355-361.	2.5	16
69	Site-Dependent E-Cadherin Cleavage and Nuclear Translocation in a Metastatic Colorectal Cancer Model. American Journal of Pathology, 2010, 177, 2067-2079.	3.8	35
70	Epigenetics and environment: a complex relationship. Journal of Applied Physiology, 2010, 109, 243-251.	2.5	191
71	Mechanisms of Resistance to Vitamin D Action in Human Cancer Cells. , 2010, , 325-334.		4
72	Nuclear receptors: Genomic and non-genomic effects converge. Cell Cycle, 2009, 8, 1675-1680.	2.6	101

#	Article	IF	CITATIONS
73	Snail2 cooperates with Snail1 in the repression of vitamin D receptor in colon cancer. Carcinogenesis, 2009, 30, 1459-1468.	2.8	119
74	Morphology and Distribution of Chandelier Cell Axon Terminals in the Mouse Cerebral Cortex and Claustroamygdaloid Complex. Cerebral Cortex, 2009, 19, 41-54.	2.9	51
75	Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells. Journal of Clinical Investigation, 2009, 119, 2343-2358.	8.2	96
76	SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene, 2009, 28, 4375-4385.	5.9	61
77	The mechanism of action of plitidepsin. Current Opinion in Investigational Drugs, 2009, 10, 536-42.	2.3	23
78	Superagonistic Fluorinated Vitamin D3 Analogs Stabilize Helix 12 of the Vitamin D Receptor. Chemistry and Biology, 2008, 15, 1029-1034.	6.0	51
79	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	10.2	1,314
80	DICKKOPF-4 is induced by TCF/β-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1α,25-dihydroxyvitamin D3. Oncogene, 2008, 27, 4467-4477.	5.9	152
81	New role of IKKα/β phosphorylated lκBα in axon outgrowth and axon initial segment development. Molecular and Cellular Neurosciences, 2008, 37, 832-844.	2.2	48
82	Plitidepsin Has a Dual Effect Inhibiting Cell Cycle and Inducing Apoptosis via Rac1/c-Jun NH ₂ -Terminal Kinase Activation in Human Melanoma Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1093-1101.	2.5	45
83	E-cadherin controls β-catenin and NF-κB transcriptional activity in mesenchymal gene expression. Journal of Cell Science, 2008, 121, 2224-2234.	2.0	132
84	RhoA–ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells. Journal of Cell Biology, 2008, 183, 697-710.	5.2	102
85	Vitamin D3 and Colorectal Cancer. Advances in Experimental Medicine and Biology, 2008, 617, 271-280.	1.6	8
86	Vitamin D and Wnt/beta-catenin pathway in colon cancer: role and regulation of DICKKOPF genes. Anticancer Research, 2008, 28, 2613-23.	1.1	111
87	Epigenetic Alterations of the Wnt/β -Catenin Pathway in Human Disease. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2007, 7, 13-21.	1.2	40
88	The inhibition of Wnt/l²-catenin signalling by 11̂±,25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocrine-Related Cancer, 2007, 14, 141-151.	3.1	89
89	The Distribution of Chandelier Cell Axon Terminals that Express the GABA Plasma Membrane Transporter GAT-1 in the Human Neocortex. Cerebral Cortex, 2007, 17, 2060-2071.	2.9	48
90	The Wnt antagonist DICKKOPF-1 gene is induced by 1Â,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis, 2007, 28, 1877-1884.	2.8	166

#	Article	IF	CITATIONS
91	Proteomic Analysis of the Resistance to Aplidin in Human Cancer Cells. Journal of Proteome Research, 2007, 6, 1286-1294.	3.7	35
92	Vitamin D regulates the phenotype of human breast cancer cells. Differentiation, 2007, 75, 193-207.	1.9	116
93	Cation-Chloride Cotransporters and GABA-ergic Innervation in the Human Epileptic Hippocampus. Epilepsia, 2007, 48, 663-673.	5.1	134
94	Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18. Progress in Brain Research, 2006, 154, 15-32.	1.4	47
95	Aromatase expression in the human temporal cortex. Neuroscience, 2006, 138, 389-401.	2.3	132
96	Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death and Differentiation, 2006, 13, 1968-1981.	11.2	73
97	Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene, 2006, 25, 4116-4121.	5.9	320
98	Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy. Neurobiology of Disease, 2006, 22, 374-387.	4.4	72
99	The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, Eâ€cadherin and vitamin D receptor in human colon carcinomas. International Journal of Cancer, 2006, 119, 2098-2104.	5.1	128
100	Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Research, 2006, 34, 2077-2084.	14.5	135
101	Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2920-2925.	7.1	150
102	Plitidepsin Cellular Binding and Rac1/JNK Pathway Activation Depend on Membrane Cholesterol Content. Molecular Pharmacology, 2006, 70, 1654-1663.	2.3	24
103	Effects of 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Anticancer Research, 2006, 26, 2669-81.	1.1	51
104	The Wnt antagonist DICKKOPF-1 gene is a downstream target of Î ² -catenin/TCF and is downregulated in human colon cancer. Oncogene, 2005, 24, 1098-1103.	5.9	350
105	lα,25-Dihydroxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells. Oncogene, 2005, 24, 6533-6544.	5.9	91
106	Double bouquet cell in the human cerebral cortex and a comparison with other mammals. Journal of Comparative Neurology, 2005, 486, 344-360.	1.6	115
107	Vitamin D and cancer: an update of in vitro and in vivo data. Frontiers in Bioscience - Landmark, 2005, 10, 2723.	3.0	90
108	Cyclin D1 Represses p300 Transactivation through a Cyclin-dependent Kinase-independent Mechanism. Journal of Biological Chemistry, 2005, 280, 29728-29742.	3.4	82

#	Article	IF	CITATIONS
109	SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications. British Journal of Cancer, 2005, 92, 985-989.	6.4	67
110	Postnatal Thyroid Hormone Supplementation Rescues Developmental Abnormalities Induced by Congenital-Neonatal Hypothyroidism in the Rat Retina. Ophthalmic Research, 2005, 37, 225-234.	1.9	22
111	E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 2005, 14, 3361-3370.	2.9	168
112	Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain, 2004, 127, 45-64.	7.6	194
113	The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nature Medicine, 2004, 10, 917-919.	30.7	269
114	JNK activation is critical for Aplidinâ,,¢-induced apoptosis. Oncogene, 2004, 23, 4673-4680.	5.9	67
115	Neuroserpin is post-transcriptionally regulated by thyroid hormone. Molecular Brain Research, 2004, 123, 56-65.	2.3	16
116	Glucocorticoid receptor-JNK interaction mediates inhibition of the JNK pathway by glucocorticoids. EMBO Journal, 2003, 22, 6035-6044.	7.8	102
117	Neuronal HuD gene encoding a mRNA stability regulator is transcriptionally repressed by thyroid hormone. Journal of Neurochemistry, 2003, 86, 763-773.	3.9	26
118	The First Locked Side-Chain Analogues of Calcitriol (1α,25-Dihydroxyvitamin D3) Induce Vitamin D Receptor Transcriptional Activity. Organic Letters, 2003, 5, 4033-4036.	4.6	25
119	Mixed lineage kinase 2 enhances trans-repression of Alien and nuclear receptors. Molecular and Cellular Endocrinology, 2003, 213, 71-78.	3.2	8
120	Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain. Developmental Biology, 2003, 254, 149-160.	2.0	34
121	Thyroid hormone receptors/THR genes in human cancer. Cancer Letters, 2003, 192, 121-132.	7.2	103
122	Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation. Neuroscience, 2003, 120, 353-364.	2.3	65
123	Role of HuR in Skeletal Myogenesis through Coordinate Regulation of Muscle Differentiation Genes. Molecular and Cellular Biology, 2003, 23, 4991-5004.	2.3	177
124	AplidinTM Induces Apoptosis in Human Cancer Cells via Glutathione Depletion and Sustained Activation of the Epidermal Growth Factor Receptor, Src, JNK, and p38 MAPK. Journal of Biological Chemistry, 2003, 278, 241-250.	3.4	140
125	Genetic signatures of differentiation induced by 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Research, 2003, 63, 7799-806.	0.9	158
126	PSA-NCAM Immunoreactivity in Chandelier Cell Axon Terminals of the Human Temporal Cortex. Cerebral Cortex, 2002, 12, 617-624.	2.9	36

#	Article	IF	CITATIONS
127	HuD binds to three AU-rich sequences in the 3'-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein. Nucleic Acids Research, 2002, 30, 2202-2211.	14.5	44
128	Low Thyroid Hormone Levels Impair the Perinatal Development of the Rat Retina. Ophthalmic Research, 2002, 34, 181-191.	1.9	45
129	Regulation of tau RNA Maturation by Thyroid Hormone Is Mediated by the Neural RNA-Binding Protein Musashi-1. Molecular and Cellular Neurosciences, 2002, 20, 198-210.	2.2	39
130	Inhibition of proliferation and expression of T1 and cyclin D1 genes by thyroid hormone in mammary epithelial cells. Molecular Carcinogenesis, 2002, 34, 25-34.	2.7	34
131	GABABR1 receptor protein expression in human mesial temporal cortex: Changes in temporal lobe epilepsy. Journal of Comparative Neurology, 2002, 449, 166-179.	1.6	36
132	Dexamethasone Induces Lipocalin-Type Prostaglandin D Synthase Gene Expression in Mouse Neuronal Cells. Journal of Neurochemistry, 2002, 75, 460-470.	3.9	41
133	The c-erbAα Protooncogene Induces Apoptosis in Glial Cells via a Protein Kinase C- and bcl-2-Suppressible Mechanism. Journal of Neurochemistry, 2002, 70, 2315-2326.	3.9	12
134	Identification of a Mammalian Homologue of the Fungal Tom70 Mitochondrial Precursor Protein Import Receptor as a Thyroid Mitochondrial Precursor Protein Import Receptor as a Thyroid Hormone-Regulated Gene in Specific Brain Regions. Journal of Neurochemistry, 2002, 73, 2240-2249.	3.9	32
135	Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene, 2002, 21, 4307-4316.	5.9	101
136	Aplidinâ,"¢ induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C δ. Oncogene, 2002, 21, 7533-7544.	5.9	130
137	Glucocorticoid Receptor Antagonism of AP-1 Activity by Inhibition of MAPK Family. , 2002, , 131-152.		2
138	Thyroid hormone regulates TAG-1 expression in the developing rat brain. European Journal of Neuroscience, 2001, 14, 1209-1218.	2.6	30
139	Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. Journal of Comparative Neurology, 2001, 433, 148-155.	1.6	84
140	Thyroid hormone regulates the obesity gene <i>tub</i> . EMBO Reports, 2001, 2, 499-504.	4.5	49
141	c-Jun N-terminal kinase activation is required for the inhibition of neovascularization by thrombospondin-1. Oncogene, 2001, 20, 3443-3448.	5.9	84
142	Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. Journal of Cell Biology, 2001, 154, 369-388.	5.2	725
143	Patterns of GABABR1a,b Receptor Gene Expression in Monkey and Human Visual Cortex. Cerebral Cortex, 2001, 11, 104-113.	2.9	19
144	Role of Thyroid Hormone in Craniofacial and Eye Development Using a Rat Model. Ophthalmic Research, 2001, 33, 283-291.	1.9	44

#	Article	IF	CITATIONS
145	Effect of Hypothyroidism on G Protein-Coupled Receptor Kinase 2 Expression Levels in Rat Liver, Lung, and Heart*. Endocrinology, 2001, 142, 987-991.	2.8	28
146	Expression patterns of the regulatory proteins G protein-coupled receptor kinase 2 and β-arrestin 1 during rat postnatal brain development. FEBS Journal, 2000, 267, 4390-4396.	0.2	22
147	Glucocorticoids Antagonize Ap-1 by Inhibiting the Activation/Phosphorylation of Jnk without Affecting Its Subcellular Distribution. Journal of Cell Biology, 2000, 150, 1199-1208.	5.2	105
148	Regulation of the L1 Cell Adhesion Molecule by Thyroid Hormone in the Developing Brain. Molecular and Cellular Neurosciences, 2000, 16, 499-514.	2.2	52
149	Thyroid Hormone Regulates <i>reelin</i> and <i>dab1</i> Expression During Brain Development. Journal of Neuroscience, 1999, 19, 6979-6993.	3.6	150
150	Inhibition of tenascin-C expression in mammary epithelial cells by thyroid hormone. Molecular Carcinogenesis, 1999, 24, 99-107.	2.7	10
151	Retinoic acid and 1,25-dihydroxyvitamin D3 inhibit tenascin-C expression in rat glioma C6 cells. Journal of Neuroscience Research, 1999, 58, 293-300.	2.9	20
152	Laminar and cellular distribution of AMPA, kainate, and NMDA receptor subunits in monkey sensory-motor cortex. , 1999, 407, 472-490.		46
153	Temporal modulation of GABAA receptor subunit gene expression in developing monkey cerebral cortex. Neuroscience, 1999, 91, 1223-1245.	2.3	25
154	Identification of the mammalian homolog of the splicing regulator Suppressor-of-white-apricot as a thyroid hormone regulated gene. Molecular Brain Research, 1999, 71, 332-340.	2.3	20
155	Hormone-activated nuclear receptors inhibit the stimulation of the JNK and ERK signalling pathways in endothelial cells. FEBS Letters, 1999, 459, 272-276.	2.8	48
156	GABAB receptor gene expression in monkey thalamus. , 1998, 394, 118-126.		47
157	Changes in subcellular localization of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. Journal of Comparative Neurology, 1998, 395, 450-465.	1.6	112
158	Identification of a thyroid hormone response element in the promoter region of the rat lipocalin-type prostaglandin D synthase (β-trace) gene. Molecular Brain Research, 1998, 55, 321-330.	2.3	38
159	Developmental expression of tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience, 1998, 84, 309-322.	2.3	64
160	1,25-Dihydroxyvitamin D3inhibits tenascin-C expression in mammary epithelial cells. FEBS Letters, 1998, 426, 225-228.	2.8	40
161	Vitamin D3 inhibits proliferation and increases c-myc expression in fibroblasts from psoriatic patients. Journal of Endocrinological Investigation, 1998, 21, 520-525.	3.3	6
162	Organization of the Caudal Rhombencephalic Alar Plate of the Ribbed Newt <i>Pleurodeles waltl: </i> Evidence for the Presence of Dorsal Column and Lateral Cervical Nuclei. Brain, Behavior and Evolution, 1998, 51, 162-182.	1.7	8

#	Article	IF	CITATIONS
163	Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes and Development, 1997, 11, 3351-3364.	5.9	298
164	Biological activities of thyroid hormone receptors. European Journal of Endocrinology, 1997, 137, 433-445.	3.7	73
165	Hypothyroidism Alters the Expression of Prostaglandin D ₂ Synthase/β―Trace in Specific Areas of the Developing Rat Brain. European Journal of Neuroscience, 1997, 9, 1566-1573.	2.6	32
166	Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation EMBO Journal, 1996, 15, 4307-4316.	7.8	72
167	The use of in vitro preparations of the isolated amphibian central nervous system in neuroanatomy and electrophysiology. Journal of Neuroscience Methods, 1996, 70, 91-102.	2.5	68
168	Evidence for an Anuran Homologue of the Mammalian Spinocervicothalamic System: AnIn VitroTract-tracing Study inXenopus laevis. European Journal of Neuroscience, 1996, 8, 1390-1400.	2.6	23
169	Post-transcriptional induction of β1-adrenergic receptor by retinoic acid, but not triiodothyronine, in C6 glioma cells expressing thyroid hormone receptors. European Journal of Endocrinology, 1996, 135, 709-715.	3.7	5
170	Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation. EMBO Journal, 1996, 15, 4307-16.	7.8	19
171	Anuran dorsal column nucleus: Organization, immunohistochemical characterization, and fiber connections in <i>Rana perezi</i> and <i>Xenopus laevis</i> . Journal of Comparative Neurology, 1995, 363, 197-220.	1.6	53
172	Thyroid hormone regulates stromelysin expression, protease secretion and the morphogenetic potential of normal polarized mammary epithelial cells EMBO Journal, 1995, 14, 1145-1155.	7.8	46
173	Ontogeny of vasotocinergic and mesotocinergic systems in the brain of the South African clawed frog Xenopus laevis. Journal of Chemical Neuroanatomy, 1995, 9, 27-40.	2.1	24
174	Identification of the Mitochondrial NADH Dehydrogenase Subunit-3 as a Thyroid Hormone-Regulated Gene by Whole Genome PCR Analysis. Biochemical and Biophysical Research Communications, 1995, 210, 995-1000.	2.1	57
175	Thyroid hormone regulates stromelysin expression, protease secretion and the morphogenetic potential of normal polarized mammary epithelial cells. EMBO Journal, 1995, 14, 1145-55.	7.8	16
176	Induction of platelet-derived growth factor B/c-sis by the v-erbA oncogene in glial cells. Oncogene, 1995, 10, 1103-10.	5.9	7
177	Isolation of genomic DNA fragments corresponding to genes modulatedin vivoby a transcription factor. Nucleic Acids Research, 1994, 22, 4132-4138.	14.5	16
178	Characterization of the promoter region and flanking sequences of the neuron-specific gene RC3 (neurogranin). Molecular Brain Research, 1994, 27, 205-214.	2.3	47
179	Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Molecular Brain Research, 1994, 27, 249-257.	2.3	101
180	Spinothalamic projections in amphibians as revealed with anterograde tracing techniques. Neuroscience Letters, 1994, 171, 81-84.	2.1	23

#	Article	IF	CITATIONS
181	Distribution, morphology, and central projections of mesencephalic trigeminal neurons in the frogRana ridibunda. The Anatomical Record, 1993, 235, 165-177.	1.8	12
182	Trigeminal primary afferent projections to the spinal cord of the frog,Rana ridibunda. Journal of Morphology, 1993, 217, 137-146.	1.2	9
183	Brain-Specific Prostaglandin D2 Synthetase mRNA Is Dependent on Thyroid Hormone during Rat Brain Development. Biochemical and Biophysical Research Communications, 1993, 196, 396-401.	2.1	31
184	Neonatal hypothyroidism affects the timely expression of myelin-associated glycoprotein in the rat brain Journal of Clinical Investigation, 1993, 91, 812-818.	8.2	158
185	Early development of dorsal column-medial lemniscal projections in the clawed toad, Xenopus laevis. Developmental Brain Research, 1993, 74, 291-294.	1.7	9
186	Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate Endocrinology, 1993, 133, 467-473.	2.8	87
187	Thyroid hormone receptor/c-erbA: control of commitment and differentiation in the neuronal/chromaffin progenitor line PC12 Journal of Cell Biology, 1993, 121, 423-438.	5.2	68
188	Retinoic acid posttranscriptionally up-regulates proteolipid protein gene expression in C6 glioma cells Journal of Biological Chemistry, 1993, 268, 25617-25623.	3.4	27
189	Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate. Endocrinology, 1993, 133, 467-473.	2.8	35
190	Retinoic acid posttranscriptionally up-regulates proteolipid protein gene expression in C6 glioma cells. Journal of Biological Chemistry, 1993, 268, 25617-23.	3.4	22
191	Effects of Neonatal Hypothyroidism on Rat Brain Gene Expression. Molecular Endocrinology, 1991, 5, 273-280.	3.7	142
192	Biological Effects of the v-erbA Oncogene in Transformation of Avian Erythroid Cells. , 1991, , 137-147.		1
193	The Chicken c-erbA α-Product Induces Expression of Thyroid Hormone-Responsive Genes in 3,5,3′-Triiodothyronine Receptor- Deficient Rat Hepatoma Cells. Molecular Endocrinology, 1990, 4, 312-320.	3.7	20
194	v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell, 1990, 61, 1035-1049.	28.9	238
195	Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector. Journal of Virology, 1990, 64, 5891-5902.	3.4	36
196	DNA Binding Properties of the Thyroid Hormone Receptor/c-erbA Protein and Its Viral Homologue P75gag-v-erbA. , 1990, , 69-75.		0
197	Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature, 1989, 340, 242-244.	27.8	402
198	The Thyroid Hormone Receptor/c-erbA Protein and its Viral Homologue P75gag-v-erbA. , 1989, , 161-168.		1

12

#	Article	IF	CITATIONS
199	Functions of the erbA and erbB Oncogenes in Avian Erythroblatosis. , 1989, , 289-300.		0
200	Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein EMBO Journal, 1988, 7, 155-159.	7.8	104
201	Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein. EMBO Journal, 1988, 7, 155-9.	7.8	35
202	The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature, 1986, 324, 635-640.	27.8	1,388
203	Potentiation by levamisole, methisoprinol, and adenine or adenosine of the inhibitory activity of human interferon against encephalomyocarditis virus. Antimicrobial Agents and Chemotherapy, 1986, 30, 192-195.	3.2	14
204	The Regulation of Translation in Reovirus-infected Cells. Journal of General Virology, 1985, 66, 2161-2170.	2.9	13
205	Modification of membrane permeability during semliki forest virus infection. Virology, 1985, 146, 203-212.	2.4	49
206	Cloning and expression of human interleukin 2 in Streptomyces lividans using the Escherichiacoli consensus promoter. Biochemical and Biophysical Research Communications, 1985, 133, 511-519.	2.1	27
207	Action of Human Lymphoblastoid Interferon on HeLa Cells Infected with RNA-containing Animal Viruses. Journal of General Virology, 1984, 65, 377-390.	2.9	28
208	Formation of Non-infective Herpesvirus Particles in Cultured Cells Treated with Human Interferon. Journal of General Virology, 1984, 65, 1069-1078.	2.9	53
209	Synthesis of heat-shock proteins in HeLa cells: Inhibition by virus infection. Virology, 1984, 137, 150-159.	2.4	60
210	Comparison of the antiviral action of different human interferons against DNA and RNA viruses. FEMS Microbiology Letters, 1984, 21, 105-111.	1.8	2
211	Effect of interferon treatment on blockade of protein synthesis induced by poliovirus infection. FEBS Journal, 1983, 137, 623-629.	0.2	14
212	Cellular RNA is not degraded in interferon-treated HeLa cells after poliovirus infection. FEBS Letters, 1983, 160, 87-92.	2.8	11
213	Do cells treated with human interferon survive virus infection?. FEMS Microbiology Letters, 1983, 20, 317-321.	1.8	0
214	Reversal by Hypotonic Medium of the Antiviral State Induced by Lymphoblastoid Interferon in Human HeLa Cells. Intervirology, 1981, 16, 106-113.	2.8	4
215	Protein Synthesis and Membrane Integrity in Interferon-treated HeLa Cells Infected with Encephalomyocarditis Virus. Journal of General Virology, 1981, 56, 153-162.	2.9	27
216	The complex life of DICKKOPF-1 in cancer cells. Cancer Cell & Microenvironment, 0, , .	0.8	0