Stefan Ruhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9042780/publications.pdf

Version: 2024-02-01

186265 243625 2,103 55 28 44 citations h-index g-index papers 61 61 61 2581 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Human Salivary Proteome Wiki: A Community-Driven Research Platform. Journal of Dental Research, 2021, 100, 1510-1519.	5 . 2	27
2	Saliva and Serum Protein Adsorption on Chemically Modified Silica Surfaces. Journal of Dental Research, 2021, 100, 1047-1054.	5.2	9
3	The Crossroads of Glycoscience, Infection, and Immunology. Frontiers in Microbiology, 2021, 12, 731008.	3.5	3
4	Human and Nonhuman Primate Lineage-Specific Footprints in the Salivary Proteome. Molecular Biology and Evolution, 2020, 37, 395-405.	8.9	19
5	Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Cell Reports, 2020, 33, 108402.	6.4	54
6	Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions. Journal of Virology, 2020, 94, .	3.4	35
7	Independent amylase gene copy number bursts correlate with dietary preferences in mammals. ELife, 2019, 8, .	6.0	78
8	Glycan recognition at the saliva – oral microbiome interface. Cellular Immunology, 2018, 333, 19-33.	3.0	77
9	Archaic Hominin Introgression in Africa Contributes to Functional Salivary MUC7 Genetic Variation. Molecular Biology and Evolution, 2017, 34, 2704-2715.	8.9	57
10	Absence of capsule reveals glycanâ€mediated binding and recognition of salivary mucin MUC7 by <i>Streptococcus pneumoniae</i> . Molecular Oral Microbiology, 2016, 31, 175-188.	2.7	21
11	Recent evolution of the salivary mucin MUC7. Scientific Reports, 2016, 6, 31791.	3.3	30
12	Probing of Microbial Biofilm Communities for Coadhesion Partners. Applied and Environmental Microbiology, 2014, 80, 6583-6590.	3.1	17
13	Oral Streptococci Utilize a Siglec-Like Domain of Serine-Rich Repeat Adhesins to Preferentially Target Platelet Sialoglycans in Human Blood. PLoS Pathogens, 2014, 10, e1004540.	4.7	7 5
14	Saliva-Microbe Interactions and Salivary Gland Dysfunction. Advances in Dental Research, 2014, 26, 7-14.	3.6	10
15	Salivary protein adsorption and Streptococccus gordonii adhesion to dental material surfaces. Dental Materials, 2013, 29, 1080-1089.	3.5	27
16	Host Defense Proteins Derived from Human Saliva Bind to Staphylococcus aureus. Infection and Immunity, 2013, 81, 1364-1373.	2.2	33
17	Implications of salivary protein binding to commensal and pathogenic bacteria. Journal of Oral Biosciences, 2013, 55, 169-174.	2.2	13
18	The scientific exploration of saliva in the post-proteomic era: from database back to basic function. Expert Review of Proteomics, 2012, 9, 85-96.	3.0	69

#	Article	IF	CITATIONS
19	Surface-immobilized PAMAM-dendrimers modified with cationic or anionic terminal functions: Physicochemical surface properties and conformational changes after application of liquid interface stress. Journal of Colloid and Interface Science, 2012, 366, 179-190.	9.4	30
20	The impact of dendrimer-grafted modifications to model silicon surfaces on protein adsorption and bacterial adhesion. Biomaterials, 2011, 32, 9168-9179.	11.4	43
21	Integrity of Proteins in Human Saliva after Sterilization by Gamma Irradiation. Applied and Environmental Microbiology, 2011, 77, 749-755.	3.1	22
22	Outer Membrane Protein Expression Profile in <i>Helicobacter pylori</i> Clinical Isolates. Infection and Immunity, 2009, 77, 3782-3790.	2,2	88
23	Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers. Biomaterials, 2009, 30, 4921-4929.	11.4	98
24	Identification of glycoprotein receptors within the human salivary proteome for the lectinâ€like BabA and SabA adhesins of <i>Helicobacter pylori</i> by fluorescenceâ€based 2â€D bacterial overlay. Proteomics, 2009, 9, 1582-1592.	2.2	44
25	Resemblance of salivary protein profiles between children with early childhood caries and cariesâ€free controls. European Journal of Oral Sciences, 2009, 117, 369-373.	1.5	20
26	Adhesion of eukaryotic cells and <i>Staphylococcus aureus</i> to silicon model surfaces. Journal of Biomedical Materials Research - Part A, 2008, 84A, 817-827.	4.0	23
27	<i>Helicobacter pylori</i> in human oral cavity and stomach. European Journal of Oral Sciences, 2008, 116, 297-304.	1.5	69
28	Fluorescence-Based Bacterial Overlay Method for Simultaneous In Situ Quantification of Surface-Attached Bacteria. Applied and Environmental Microbiology, 2007, 73, 2653-2660.	3.1	30
29	Characterization and clean-up proposal for a chromium(VI) contaminated site in Mexico. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2007, 158, 145-164.	0.4	0
30	Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics, 2006, 6, 1631-1639.	2.2	130
31	Chemiluminescence-based detection and comparison of protein amounts adsorbed on differently modified silica surfaces. Analytical Biochemistry, 2006, 359, 194-202.	2.4	24
32	Helicobacter pylori Adhesion to Carbohydrates. Methods in Enzymology, 2006, 417, 293-339.	1.0	46
33	Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology, 2005, 15, 700-708.	2.5	100
34	Proteins in Whole Saliva during the First Year of Infancy. Journal of Dental Research, 2005, 84, 29-34.	5.2	39
35	Salivary Receptors for the Proline-rich Protein-binding and Lectin-like Adhesins of Oral Actinomyces and Streptococci. Journal of Dental Research, 2004, 83, 505-510.	5.2	83
36	Salivary Proteins and Cytokines in Drug-induced Gingival Overgrowth. Journal of Dental Research, 2004, 83, 322-326.	5.2	48

#	Article	IF	Citations
37	Who needs spit?. Clinical Oral Investigations, 2003, 7, 121-122.	3.0	О
38	Adhesion of viridans group streptococci to sialic acid-, galactose-andN-acetylgalactosamine-containing receptors. Oral Microbiology and Immunology, 2002, 17, 257-262.	2.8	37
39	Identification of Polymorphonuclear Leukocyte and HL-60 Cell Receptors for Adhesins of Streptococcus gordonii and Actinomyces naeslundii. Infection and Immunity, 2000, 68, 6346-6354.	2.2	60
40	Identification of Polymorphonuclear Leukocyte and HL-60 Cell Receptors for Adhesins of Streptococcus gordonii and Actinomyces naeslundii. Infection and Immunity, 2000, 68, 6346-6354.	2.2	7
41	Specific Inhibitors of Bacterial Adhesion: Observations From the Study of Gram-Positive Bacteria that Initiate Biofilm Formation on the Tooth Surface. Advances in Dental Research, 1997, 11, 168-175.	3 . 6	34
42	A specific cell surface antigen of Streptococcus gordonii is associated with bacterial hemagglutination and adhesion to alpha2-3-linked sialic acid-containing receptors. Infection and Immunity, 1997, 65, 5042-5051.	2.2	75
43	Recognition of immunoglobulin A1 by oral actinomyces and streptococcal lectins. Infection and Immunity, 1996, 64, 5421-5424.	2.2	53
44	Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin. Infection and Immunity, 1995, 63, 2625-2631.	2.2	24
45	Dissociation of early and late markers of murine myeloid differentiation by interferon-gamma and interleukin-6. Journal of Cellular Physiology, 1993, 155, 130-138.	4.1	14
46	Soluble interleukin-4 receptor production by murine myeloid progenitor cells: Induction by interleukin-6 and interferon- \hat{l}^3 . Cytokine, 1993, 5, 144-149.	3.2	9
47	Interferon-gamma antagonizes interleukin-6-induced expression of interleukin-4 receptors in murine myeloid cells by a transcriptional mechanism. Blood, 1993, 82, 2641-2648.	1.4	0
48	Interleukin 1 augments the expression of the interleukin 2 receptor alpha-chain in interleukin 6-stimulated myeloid cells by a transcriptional and posttranscriptional mechanism. Experimental Hematology, 1992, 20, 1208-15.	0.4	2
49	Transient expression of the IL-2 receptor alpha-chain in IL-6-induced myeloid cells is regulated by autocrine production of prostaglandin E2. Experimental Hematology, 1992, 20, 619-25.	0.4	7
50	Regulation of interleukin-4 receptors on murine myeloid progenitor cells by interleukin-6. Blood, 1991, 78, 1678-1684.	1.4	22
51	Regulation of interleukin-4 receptors on murine myeloid progenitor cells by interleukin-6. Blood, 1991, 78, 1678-84.	1.4	9
52	Adenosine and Its Derivatives Control Human Monocyte Differentiation Into Highly Accessory Cells Versus Macrophages. Journal of Leukocyte Biology, 1990, 47, 429-439.	3.3	51
53	Induction of interferon-β and 2′,5′-oligoadenylate synthetase mRNAs by interleukin 6 during differentiation of murine myeloid cells. Cytokine, 1990, 2, 238-246.	3.2	11
54	Veiled accessory cells deduced from monocytes. Immunobiology, 1987, 176, 154-166.	1.9	93

#	Article	IF	CITATIONS
55	Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. SSRN Electronic Journal, 0, , .	0.4	0