
Min Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9041942/publications.pdf Version: 2024-02-01

MIN FAN

r

#	Article	IF	CITATIONS
1	Syntheses, characterizationsna and water-electrolysis properties of 2D α- and β-PdSeO3 bulk and nanosheet semiconductors. Journal of Solid State Chemistry, 2021, 297, 122018.	2.9	1
2	Theoretical Investigation into Thermodynamics and Electronic Structure of an Ammonia-productive Molybdenum-centered Catalyst. Inorganic Chemistry, 2021, 60, 11878-11882.	4.0	3
3	Solventâ€Induced Growth of Freeâ€Standing 2D Si Nanosheets. Small, 2020, 16, e2005426.	10.0	9
4	Two 2D Layered P ₄ Mo ₆ Clusters with Potential Bifunctional Properties: Proton Conduction and CO ₂ Photoreduction. Inorganic Chemistry, 2020, 59, 12876-12883.	4.0	33
5	The cocatalyst roles of three anionic Cd(II) porphyrinic metal-organic frameworks in the photocatalytic CO2 reduction to CO process carried out in Ru(bpy)3Cl2/CH3CN/H2O/Triethylamine or triethanolamine system. Journal of Solid State Chemistry, 2020, 292, 121690.	2.9	4
6	Two anionic Ni(II) porphyrinic metalâ^'organic frameworks: Syntheses, flexibility and roles in visible-light photocatalytic CO2 reduction to CO in the Ru(bpy)3Cl2/TEA/CH3CN system. Journal of Solid State Chemistry, 2020, 287, 121340.	2.9	5
7	Charge, adsorption, water stability and bandgap tuning of an anionic Cd(<scp>ii</scp>) porphyrinic metal–organic framework. Dalton Transactions, 2019, 48, 8678-8692.	3.3	14
8	Two Ni(II) semiconducting metal-organic frameworks based on the tetrakis(4-carboxyphenyl)silane and an imidazole ligand: Syntheses, characterization, water stability and photoelectric properties. Journal of Solid State Chemistry, 2018, 265, 100-108.	2.9	5
9	SbSI Nanocrystals: An Excellent Visible Light Photocatalyst with Efficient Generation of Singlet Oxygen. ACS Sustainable Chemistry and Engineering, 2018, 6, 12166-12175.	6.7	27
10	A Pair of Rare Three-Dimensional Chiral Polyoxometalate-Based Metal–Organic Framework Enantiomers Featuring Superior Performance as the Anode of Lithium-Ion Battery. ACS Applied Energy Materials, 2018, 1, 4931-4938.	5.1	37
11	Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands. Journal of Solid State Chemistry, 2017, 253, 129-138.	2.9	9
12	Theoretical and experimental studies on three water-stable, isostructural, paddlewheel based semiconducting metal–organic frameworks. Dalton Transactions, 2017, 46, 8204-8218.	3.3	20
13	Syntheses of Exceptionally Stable Aluminum(III) Metal–Organic Frameworks: How to Grow Highâ€Quality, Large, Single Crystals. Chemistry - A European Journal, 2017, 23, 15518-15528.	3.3	60
14	Highly Stable Mesoporous Zirconium Porphyrinic Frameworks with Distinct Flexibility. Chemistry - A European Journal, 2016, 22, 6268-6276.	3.3	31
15	Syntheses of new topology BTTB-based metal–organic frameworks in CH ₃ CN/H ₂ O mixed solvents. Journal of Coordination Chemistry, 2016, 69, 2220-2230.	2.2	4
16	An Unprecedented M–O Cluster Constructed from Nanosized {[C ₅ NH ₅] ₉ [H ₃₁ Mo ^V ₁₂ O <sub Anions Exhibiting Interesting Nonlinear-Optical Properties. Inorganic Chemistry, 2016, 55, 11621-11625.</sub 	>24< 4so b>C	o< s ¤p>ll
17	Frontispiece: Highly Stable Mesoporous Zirconium Porphyrinic Frameworks with Distinct Flexibility. Chemistry - A European Journal, 2016, 22, .	3.3	0
18	Shape-controlled synthesis of \hat{l} ±-Fe ₂ O ₃ nanocrystals for efficient adsorptive	3.6	14

removal of Congo red. RSC Advances, 2015, 5, 49696-49702.

Min Fang

#	Article	IF	CITATIONS
19	Synthesis of an exceptional water-stable two-fold interpenetrated Zn(<scp>ii</scp>)-paddlewheel metal–organic framework. CrystEngComm, 2015, 17, 5906-5910.	2.6	15
20	A Zr metal–organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs. Dalton Transactions, 2015, 44, 8049-8061.	3.3	77
21	What can pK _a and NBO charges of the ligands tell us about the water and thermal stability of metal organic frameworks?. Journal of Materials Chemistry A, 2014, 2, 16250-16267.	10.3	63
22	A new strategy to construct metal–organic frameworks with ultrahigh chemical stability. CrystEngComm, 2014, 16, 8656-8659.	2.6	18
23	(M3L4 + M2L4): a unique example of a co-crystal containing M3L4 and M2L4 metallocages. CrystEngComm, 2013, 15, 10311.	2.6	6
24	A 6-fold interpenetrated ThSi2 topological metal–organic framework from a nanosized tripodal aromatic acid. CrystEngComm, 2012, 14, 5166.	2.6	15
25	An unprecedented (3,7)-connected microporous solvatochromic coordination polymer built on a semirigid tripod pyridinium-4-olate ligand. CrystEngComm, 2011, 13, 6010.	2.6	20
26	Synthesis and characterization of the interpenetrated MOF-5. Journal of Materials Chemistry, 2010, 20, 3758.	6.7	152