Mao-Ping Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9040264/publications.pdf

Version: 2024-02-01

124	5,018	43 h-index	66
papers	citations		g-index
127	127	127	3583
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	lodine-catalyzed amination of benzothiazoles with KSeCN in water to access primary 2-aminobenzothiazoles. Chinese Chemical Letters, 2022, 33, 1497-1500.	9.0	11
2	Cu(II)-Catalyzed N-Directed Distal C(sp ³)–H Heteroarylation of Aliphatic <i>N</i> -Fluorosulfonamides. Organic Letters, 2022, 24, 1055-1059.	4.6	16
3	Nickel-Catalyzed <i>anti</i> -Markovnikov Hydrodifluoroalkylation of Unactivated Alkenes. Organic Letters, 2022, 24, 1083-1087.	4.6	5
4	Cobalt(II)-Catalyzed Activation of C(sp ³)â€"H Bonds: Organic Oxidant Enabled Selective Functionalization. ACS Catalysis, 2022, 12, 1650-1656.	11.2	15
5	Tailored metal–organic tetrahedral nanocages with aggregation-induced emission for an anti-counterfeiting ink and stimulus-responsive luminescence. New Journal of Chemistry, 2022, 46, 8062-8068.	2.8	11
6	Fe(III)-Catalyzed <i>N</i> -Amidomethylation of Secondary and Primary Anilines with TosMIC. Organic Letters, 2022, 24, 250-255.	4.6	4
7	Pdâ€catalyzed decarboxylative [3 + 2] cycloaddition: Assembly of highly functionalized spirooxindoles bearing two quaternary centers. Applied Organometallic Chemistry, 2022, 36, .	3.5	3
8	Chiral (Pyridine)-(Imidazoline) NCN′ Pincer Palladium(II) Complexes: Convenient Synthesis via C–H Activation and Characterization. Organometallics, 2022, 41, 984-996.	2.3	3
9	Chiral (phosphine)-(imidazoline) PCN pincer palladium(<scp>ii</scp>) complexes: synthesis and application in asymmetric hydrophosphination of 2-alkenoylpyridines with diphenylphosphine. Dalton Transactions, 2022, 51, 8350-8367.	3.3	3
10	Copper-catalyzed regioselective C2–H chlorination of indoles with <i>para</i> toluenesulfonyl chloride. Organic and Biomolecular Chemistry, 2022, 20, 4815-4825.	2.8	1
11	Cobalt-catalyzed C(sp ³)–H bond functionalization to access indole derivatives. Organic Chemistry Frontiers, 2022, 9, 3723-3729.	4.5	4
12	Facile synthesis of NC(sp3)O pincer palladium complexes and their use as efficient catalysts for Suzuki-Miyaura reaction of aryl bromides in aqueous medium. Journal of Organometallic Chemistry, 2021, 932, 121645.	1.8	4
13	Thiocarbamateâ€directed Cp*Co(III) atalyzed Olefinic Câ^'H Amidation: Facile Access to Enamines with High (<i>Z</i>)â€6electivity. European Journal of Organic Chemistry, 2021, 2021, 694-700.	2.4	9
14	NaOH-Mediated Direct Synthesis of Quinoxalines from <i>o</i> -Nitroanilines and Alcohols via a Hydrogen-Transfer Strategy. Journal of Organic Chemistry, 2021, 86, 947-958.	3.2	24
15	Directed Cobalt-Catalyzed C–H Activation to Form C–C and C–O Bonds in One Pot via Three-Component Coupling. Organic Letters, 2021, 23, 914-919.	4.6	21
16	Diastereoselective synthesis of chiral 3-substituted isoindolinones <i>via</i> rhodium(<scp>iii</scp>)-catalyzed oxidative Câ€"H olefination/annulation. Organic and Biomolecular Chemistry, 2021, 19, 5876-5887.	2.8	10
17	Regioselective Intermolecular Hydroamination of Unactivated Alkenes: "Co–H―Enabled Remote Functionalization. ACS Catalysis, 2021, 11, 6602-6613.	11.2	19
18	Transition metal catalyzed Câ€"H functionalization of arylindazoles: assembly of highly functionalized heterocycles (microreview). Chemistry of Heterocyclic Compounds, 2021, 57, 522-524.	1.2	1

#	Article	IF	Citations
19	Iron-Mediated Selective Sulfonylmethylation of Aniline Derivatives with <i>p</i> -Toluenesulfonylmethyl Isocyanide (TosMIC). Journal of Organic Chemistry, 2021, 86, 7179-7188.	3.2	7
20	Assembly of Highly Functionalized Allylic Sulfones via a Stereoselective Pdâ€Catalyzed Sequential Câ^'C/Câ^'S Cleavage and Câ^'S Formation Process. ChemistrySelect, 2021, 6, 4736-4740.	1.5	0
21	Palladium-catalyzed C–H acetoxylation of 2-arylindazoles. Tetrahedron, 2021, 93, 132277.	1.9	7
22	Regioselective N–F and α C(sp ³)–H Arylation of Aliphatic <i>N</i> Fluorosulfonamides with Imidazopyridines. Organic Letters, 2021, 23, 6807-6812.	4.6	11
23	Rh(III)â€Catalyzed Divergent C2â€carboxymethylation of Indoles and C7â€formylmethylation of Indolines with Vinylene Carbonate. Asian Journal of Organic Chemistry, 2021, 10, 2557-2561.	2.7	17
24	Maleimides in Directingâ€Groupâ€Controlled Transitionâ€Metalâ€Catalyzed Selective Câ^'H Alkylation. European Journal of Organic Chemistry, 2021, 2021, 5862-5879.	2.4	29
25	Microwaveâ€Assisted Ruthenium―and Rhodiumâ€Catalyzed Couplings of αâ€Amino Acid Ester Derived Phosphinamides with Alkynes. Chemistry - an Asian Journal, 2021, , .	3.3	1
26	Cu-Catalyzed Direct C7 Sulfonylation of Indolines with Arylsulfonyl Chlorides. Journal of Organic Chemistry, 2020, 85, 1022-1032.	3.2	33
27	Rh(III)-catalyzed C–H acylmethylation of 2H-indazoles with sulfoxonium ylides. Journal of Saudi Chemical Society, 2020, 24, 850-856.	5.2	8
28	Rh(III)-Catalyzed C–H Cyanation of 2 <i>H</i> -Indazole with <i>N</i> -Cyano- <i>N</i> -phenyl- <i>p</i> -toluenesulfonamide. Journal of Organic Chemistry, 2020, 85, 10835-10845.	3.2	31
29	Synthesis of 7-Amido Indolines by Cp*Co(III)-Catalyzed C–H Bond Amidation. Journal of Organic Chemistry, 2020, 85, 11190-11199.	3.2	18
30	Rh(III)â€Catalyzed C2â€Alkylation of Indoles with Maleimides at Low Catalyst Loadings. ChemistrySelect, 2020, 5, 12819-12822.	1.5	14
31	NCC Pincer Ni (II) Complexes Catalyzed Hydrophosphination of Nitroalkenes with Diphenylphosphine. Applied Organometallic Chemistry, 2020, 34, e5954.	3.5	5
32	Ruthenium-Catalyzed C(sp ²)â€"H Bond Bisallylation with Imidazopyridines as Directing Groups. Journal of Organic Chemistry, 2020, 85, 15167-15182.	3.2	19
33	Directed Cobalt-Catalyzed <i>anti</i> Markovnikov Hydroalkylation of Unactivated Alkenes Enabled by "Co–H―Catalysis. Organic Letters, 2020, 22, 4333-4338.	4.6	33
34	Temperature-Controlled Chalcogenation and Chalcogenocyanation of Imidazopyridines in Water under Transition Metal-Free Conditions. Journal of Organic Chemistry, 2020, 85, 9106-9116.	3. 2	45
35	Chiral NCN Pincer Iridium(III) Complexes with Bis(imidazolinyl)phenyl Ligands: Synthesis and Application in Enantioselective C–H Functionalization of Indoles with α-Aryl-α-diazoacetates. Organometallics, 2020, 39, 2222-2234.	2.3	19
36	Solvent-free and room temperature microwave-assisted direct C7 allylation of indolines ⟨i⟩via⟨ i⟩ sequential Câ€"H and Câ€"C activation. RSC Advances, 2020, 10, 10883-10887.	3.6	15

#	Article	IF	Citations
37	Synthesis of Chiral Bis(3-indolyl)methanes Bearing a Trifluoromethylated All-Carbon Quaternary Stereocenter via Nickel-Catalyzed Asymmetric Friedel–Crafts Alkylation Reaction. Journal of Organic Chemistry, 2020, 85, 9525-9537.	3.2	20
38	Palladium-catalyzed \hat{l} -selective reductive Heck reaction of alkenyl carbonyl compounds with aryl iodides and bromides. Organic Chemistry Frontiers, 2020, 7, 2216-2223.	4.5	10
39	Development of a Traceless Directing Group: Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations to Access Isoquinolinones. Journal of Organic Chemistry, 2020, 85, 4067-4078.	3.2	30
40	Ditopic Chiral Pineno-Fused 2,2′:6′,2″-Terpyridine: Synthesis, Self-Assembly, and Optical Properties. Inorganic Chemistry, 2019, 58, 15039-15044.	4.0	10
41	Chiral palladium pincer complexes for asymmetric catalytic reactions. Organic and Biomolecular Chemistry, 2019, 17, 6069-6098.	2.8	46
42	α-Alkylation of Nitriles with Alcohols Catalyzed by NNN′ Pincer Ru(II) Complexes Bearing Bipyridyl Imidazoline Ligands. Organometallics, 2019, 38, 2156-2166.	2.3	29
43	Copper-mediated direct sulfonylation of C(sp ²)â€"H bonds employing TosMIC as a sulfonyl source. Organic Chemistry Frontiers, 2019, 6, 2215-2219.	4.5	21
44	Nickel(<scp>ii</scp>)-catalyzed C(sp ²)â€"H sulfuration/annulation with elemental sulfur: selective access to benzoisothiazolones. Organic and Biomolecular Chemistry, 2019, 17, 5029-5037.	2.8	18
45	Copper-Catalyzed Double Thiolation To Access Sulfur-Bridged Imidazopyridines with Isothiocyanate. Journal of Organic Chemistry, 2019, 84, 5213-5221.	3.2	43
46	Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations by Traceless <i>N</i> , <i>O</i> -Bidentate Directing Group: Access to Isoquinolines. Organic Letters, 2019, 21, 2863-2866.	4.6	51
47	Manganese-catalyzed cascade annulations of alkyne-tethered <i>N</i> -alkoxyamides: synthesis of polycyclic isoquinolin-1(2 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2019, 17, 10167-10171.	2.8	5
48	Rhodium(III) atalyzed Direct C7 Allylation of Indolines via Sequential Câ^'H and Câ^'C Activation. Advanced Synthesis and Catalysis, 2019, 361, 1253-1258.	4.3	34
49	Metal-Free Blue-Light-Mediated Cyclopropanation of Indoles by Aryl(diazo)acetates. Synthesis, 2019, 51, 889-898.	2.3	32
50	Asymmetric Michael Addition of 2-Acetyl Azaarenes to \hat{l}^2 -CF ₃ - \hat{l}^2 -(3-indolyl)nitroalkenes Catalyzed by a Cobalt(II)/(imidazoline-oxazoline) Complex. Journal of Organic Chemistry, 2019, 84, 191-203.	3.2	14
51	NNN Pincer Ru(II)-Complex-Catalyzed α-Alkylation of Ketones with Alcohols. Journal of Organic Chemistry, 2018, 83, 3657-3668.	3.2	81
52	(Phosphinito)aryl benzimidazole PCN pincer palladium(II) complexes: Synthesis, characterization and catalytic activity in C H arylation of azoles with aryl iodides. Polyhedron, 2018, 143, 184-192.	2.2	14
53	Iodine-Mediated Difunctionalization of Imidazopyridines with Sodium Sulfinates: Synthesis of Sulfones and Sulfides. Journal of Organic Chemistry, 2018, 83, 338-349.	3.2	107
54	Copper-Mediated C–H Amination of Imidazopyridines with <i>N</i> -Fluorobenzenesulfonimide. Journal of Organic Chemistry, 2018, 83, 13991-14000.	3.2	55

#	Article	IF	CITATIONS
55	Synthesis, Characterization, and Catalytic Studies of Unsymmetrical Chiral NCC Pincer Pd(II) and Ni(II) Complexes Bearing (Imidazolinyl)aryl NHC Ligands. Organometallics, 2018, 37, 2325-2334.	2.3	25
56	C–H Monoarylation of Naphthylpyrimidines with Aryl Chlorides Catalyzed by a Water-Soluble Ruthenium Complex. Synlett, 2018, 29, 1729-1734.	1.8	4
57	Highâ€Valent Cobaltâ€Catalyzed Câ^'H Activation/Annulation of 2â€Benzamidopyridine 1â€Oxide with Terminal Alkyne: A Combined Theoretical and Experimental Study. Advanced Synthesis and Catalysis, 2018, 360, 2668-2677.	4.3	61
58	Cobalt-catalyzed <i>peri</i> -selective alkoxylation of 1-naphthylamine derivatives. Beilstein Journal of Organic Chemistry, 2018, 14, 2090-2097.	2.2	14
59	Transition Metal Pincer Complexes With Chiral Imidazoline Donor(s)., 2018,, 191-218.		6
60	Nitrosylation of imidazo[1,2-a]pyridines in metal free system. Journal of Saudi Chemical Society, 2017, 21, 91-94.	5.2	3
61	Cobalt(II)-Catalyzed Oxidative C–H Arylation of Indoles and Boronic Acids. Organic Letters, 2017, 19, 596-599.	4.6	94
62	Copperâ€Promoted Thiolation of C(sp ²)â€"H Bonds Using a 2â€Amino Alkylbenzimidazole Directing Group. European Journal of Organic Chemistry, 2017, 2017, 2280-2289.	2.4	34
63	Nickelâ€Catalyzed Sulfonylation of C(<i>>sp</i> ²)–H Bonds with Sodium Sulfinates. Advanced Synthesis and Catalysis, 2017, 359, 2241-2246.	4.3	39
64	Cobalt(<scp>ii</scp>)/(imidazoline–oxazoline)-catalyzed enantioselective Michael addition of 2-acetyl azaarenes to β-CF ₃ -β-disubstituted nitroalkenes. Organic Chemistry Frontiers, 2017, 4, 308-312.	4.5	19
65	Cobalt-Catalyzed Oxidative C–H/N–H Cross-Coupling: Selective and Facile Access to Triarylamines. ACS Catalysis, 2017, 7, 2810-2814.	11.2	81
66	Cobalt-Catalyzed Perfluoroalkylation of Quinoline Amides at the C5 Position. Synthesis, 2017, 49, 3916-3924.	2.3	11
67	An Approach to 3-(Indol-2-yl)succinimide Derivatives by Manganese-Catalyzed C–H Activation. Organic Letters, 2017, 19, 4042-4045.	4.6	107
68	Highâ€Valentâ€Cobaltâ€Catalyzed Câ^'H Functionalization Based on Concerted Metalation–Deprotonation and Singleâ€Electronâ€Transfer Mechanisms. ChemCatChem, 2016, 8, 1242-1263.	3.7	270
69	Self-Assembly of Concentric Hexagons and Hierarchical Self-Assembly of Supramolecular Metal–Organic Nanoribbons at the Solid/Liquid Interface. Journal of the American Chemical Society, 2016, 138, 9258-9268.	13.7	68
70	Water-soluble palladacycles containing hydroxymethyl groups: synthesis, crystal structures and use as catalysts for amination and Suzuki coupling of reactions. Transition Metal Chemistry, 2016, 41, 403-411.	1.4	14
71	Highly efficient synthesis of primary amides <i>via</i> aldoximes rearrangement in water under air atmosphere catalyzed by an ionic ruthenium pincer complex. RSC Advances, 2016, 6, 37093-37098.	3.6	30
72	Ni(II)-Catalyzed C(sp ²)â€"H Alkynylation/Annulation with Terminal Alkynes under an Oxygen Atmosphere: A One-Pot Approach to 3-Methyleneisoindolin-1-one. Journal of Organic Chemistry, 2016, 81, 4002-4011.	3.2	71

#	Article	IF	Citations
7 3	Reactivity of <i>p</i> -Toluenesulfonylmethyl Isocyanide: Iron-Involved Câ€"H Tosylmethylation of Imidazopyridines in Nontoxic Media. Journal of Organic Chemistry, 2016, 81, 8370-8377.	3.2	48
74	Mixed Directingâ€Group Strategy: Oxidative Câ^'H/Câ^'H Bond Arylation of Unactivated Arenes by Cobalt Catalysis. Angewandte Chemie, 2016, 128, 13769-13773.	2.0	22
7 5	Mixed Directingâ€Group Strategy: Oxidative Câ^'H/Câ^'H Bond Arylation of Unactivated Arenes by Cobalt Catalysis. Angewandte Chemie - International Edition, 2016, 55, 13571-13575.	13.8	102
76	Cobalt(II)-Catalyzed Decarboxylative C–H Activation/Annulation Cascades: Regioselective Access to Isoquinolones and Isoindolinones. Organic Letters, 2016, 18, 3610-3613.	4.6	111
77	Visible-light-mediated radical oxydifluoromethylation of olefinic amides for the synthesis of CF ₂ H-containing heterocycles. Chemical Communications, 2016, 52, 13413-13416.	4.1	136
78	Regioselective 2,2,2-Trifluoroethylation of Imidazopyridines by Visible Light Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7282-7287.	3.2	86
79	Catalyst-Free Friedel–Crafts Alkylation of Imidazo[1,2-α]pyridines. Synlett, 2016, 27, 387-390.	1.8	15
80	Cobalt(II)-Catalyzed C–H Amination of Arenes with Simple Alkylamines. Organic Letters, 2016, 18, 1318-1321.	4.6	108
81	Cobalt(II)â€Catalyzed CH Alkynylation/Annulation with Terminal Alkynes: Selective Access to 3â€Methyleneisoindolinâ€Iâ€one. Angewandte Chemie - International Edition, 2015, 54, 10012-10015.	13.8	163
82	Ligandâ€Free Pd/Câ€Catalyzed Oneâ€Pot, Threeâ€Component Synthesis of Arylâ€Substituted Benzimidazoles by Hydrogenâ€Transfer and Suzuki Reactions in Water. European Journal of Organic Chemistry, 2015, 2015, 7427-7432.	2.4	24
83	Two fluorescent cyclopalladated arylpyrazine complexes: synthesis, crystal structures and application in the double Suzuki coupling of N-heteroaryl halides with 1,4-benzenediboronic acid. Transition Metal Chemistry, 2015, 40, 501-508.	1.4	10
84	New Type of 2,6-Bis(imidazo $[1,2-\langle i\rangle a\langle i\rangle]$ pyridin-2-yl)pyridine-Based Ruthenium Complexes: Active Catalysts for Transfer Hydrogenation of Ketones. Organometallics, 2015, 34, 1170-1176.	2.3	57
85	Rhodium(III)-catalyzed annulation of 2-arylimidazo[1,2-a]pyridines and alkynes via direct double C–H activation. Tetrahedron, 2015, 71, 8200-8207.	1.9	34
86	Catalyst-free Friedelâ€"Crafts hydroxyalkylation of imidazo[1,2-α]pyridines with ethyl trifluoropyruvate. RSC Advances, 2015, 5, 90478-90481.	3.6	15
87	Cobaltâ€Catalyzed C(sp ²)H Alkoxylation of Aromatic and Olefinic Carboxamides. Angewandte Chemie - International Edition, 2015, 54, 272-275.	13.8	210
88	2-Ferrocenyl-6-(3-nitrophenyl)quinoline. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m129-m129.	0.2	0
89	Self-assembly of giant supramolecular cubes with terpyridine ligands as vertices and metals on edges. Chemical Science, 2014, 5, 1221-1226.	7.4	69
90	Structures and properties of Sm(III) coordination polymers based on 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate. Journal of the Iranian Chemical Society, 2014, 11, 853-861.	2.2	1

#	Article	IF	Citations
91	Copper-Mediated Direct Aryloxylation of Benzamides Assisted by an <i>N</i> , <i>O</i> -Bidentate Directing Group. Organic Letters, 2014, 16, 1104-1107.	4.6	99
92	Copper-Mediated Direct Alkoxylation of Arenes Using an <i>N</i> , <i>O</i> -Bidentate Directing System. Journal of Organic Chemistry, 2014, 79, 10399-10409.	3.2	59
93	Efficient and scalable Pd-catalyzed double aminocarbonylations under atmospheric pressure at low catalyst loadings. Organic Chemistry Frontiers, 2014, 1, 1261-1265.	4.5	31
94	PCN Pincer Palladium(II) Complex Catalyzed Enantioselective Hydrophosphination of Enones: Synthesis of Pyridine-Functionalized Chiral Phosphine Oxides as NC _{sp³} O Pincer Preligands. Journal of Organic Chemistry, 2014, 79, 9512-9530.	3.2	64
95	From Trigonal Bipyramidal to Platonic Solids: Self-Assembly and Self-Sorting Study of Terpyridine-Based 3D Architectures. Journal of the American Chemical Society, 2014, 136, 10499-10507.	13.7	106
96	Chiral CNN Pincer Palladium(II) Complexes with 2-Aryl-6-(oxazolinyl)pyridine Ligands: Synthesis, Characterization, and Application to Enantioselective Allylation of Isatins and Suzuki–Miyaura Coupling Reaction. Organometallics, 2014, 33, 194-205.	2.3	60
97	Enantioselective Hydrophosphination of Enones with Diphenylphosphine Catalyzed by Bis(imidazoline) NCN Pincer Palladium(II) Complexes. Organometallics, 2014, 33, 1801-1811.	2.3	54
98	Neutral and Cationic NCN Pincer Platinum(II) Complexes with 1,3-Bis(benzimidazol-2′-yl)benzene Ligands: Synthesis, Structures, and Their Photophysical Properties. Organometallics, 2014, 33, 1563-1573.	2.3	22
99	Chiral Bis(imidazolinyl)phenyl NCN Pincer Rhodium(III) Catalysts for Enantioselective Allylation of Aldehydes and Carbonyl–Ene Reaction of Trifluoropyruvates. Journal of Organic Chemistry, 2013, 78, 8712-8721.	3.2	56
100	Chiral NCN Pincer Rhodium(III) Complexes with Bis(imidazolinyl)phenyl Ligands: Synthesis and Enantioselective Catalytic Alkynylation of Trifluoropyruvates with Terminal Alkynes. Advanced Synthesis and Catalysis, 2013, 355, 927-937.	4.3	69
101	Synthesis, Characterization, and Crystal Structures of Heteroannular Cyclopalladated Ferrocenylimine-Pyridine Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 111-115.	0.6	0
102	A Cationic NCN Pincer Platinum(II) Aquo Complex with a Bis(imidazolinyl)phenyl Ligand: Studies toward its Synthesis and Asymmetric Friedel–Crafts Alkylation of Indoles with Nitroalkenes. Organometallics, 2012, 31, 835-846.	2.3	67
103	1,3-Diphosphorus Ylide Cyclopentadienylium Salts: Synthesis, Structures, and Application in Coupling Reactions. Organometallics, 2012, 31, 798-801.	2.3	14
104	Synthesis, crystal structures, and catalytic activities of palladium imidazole complexes formed by 2-hydroxyethyl group cleavage. Transition Metal Chemistry, 2012, 37, 373-378.	1.4	4
105	Neutral and cationic chiral NCN pincer nickel(ii) complexes with 1,3-bis(2′-imidazolinyl)benzenes: synthesis and characterization. Dalton Transactions, 2011, 40, 9012.	3.3	37
106	Unsymmetrical Chiral PCN Pincer Palladium(II) and Nickel(II) Complexes with Aryl-Based Aminophosphine–Imidazoline Ligands: Synthesis via Aryl C–H Activation and Asymmetric Addition of Diarylphosphines to Enones. Organometallics, 2011, 30, 3793-3803.	2.3	129
107	Symmetrical and unsymmetrical pincer complexes with group 10 metals: synthesis via aryl C–H activation and some catalytic applications. Dalton Transactions, 2011, 40, 5135.	3.3	173
108	Synthesis, structure and catalytic properties of CNN pincer palladium(ii) and ruthenium(ii) complexes with N-substituted-2-aminomethyl-6-phenylpyridines. Dalton Transactions, 2011, 40, 8964.	3.3	52

#	Article	IF	CITATIONS
109	Synthesis and Structural Characterization of Palladacycles with Polydentate Ligands by a Stepwise Coupling Route – Palladacycles Containing Halides as Efficient Catalysts and Substrates. European Journal of Inorganic Chemistry, 2011, 2011, 4878-4888.	2.0	25
110	Synthesis and characterization of new (pyrazolyl)aryl phosphinite PCN pincer palladium(II) complexes. Journal of Organometallic Chemistry, 2011, 696, 2857-2862.	1.8	24
111	Synthesis and spectral properties of arylmercury derivatives of \hat{l}_{\pm} -thiopicolinanilide. Chinese Journal of Chemistry, 2010, 11, 45-52.	4.9	1
112	Cyclopalladated complexes of 2-(m-nitrophenyl)imidazolines: synthesis, characterization and catalytic activity in the Suzuki reaction under mild conditions. Transition Metal Chemistry, 2010, 35, 271-277.	1.4	4
113	Unsymmetrical, oxazolinyl-containing achiral and chiral NCN pincer ligand precursors and their complexes with palladium(II). Journal of Organometallic Chemistry, 2010, 695, 82-89.	1.8	50
114	Synthesis and Crystal Structures of Novel Optical Active Planar Chiral Cyclopalladated Ferrocenylimine Derived from L-phenylalaninol. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 569-575.	0.6	1
115	Diphenylprolinol-Derived Symmetrical and Unsymmetrical Chiral Pincer Palladium(II) and Nickel(II) Complexes: Synthesis via One-Pot Phosphorylation/Metalation Reaction and Câ^'H Activation. Organometallics, 2010, 29, 2148-2156.	2.3	69
116	Unsymmetrical Chiral PCN Pincer Palladium(II) and Nickel(II) Complexes of (Imidazolinyl)aryl Phosphinite Ligands: Synthesis via Ligand Câ [^] H Activation, Crystal Structures, and Catalytic Studies. Organometallics, 2010, 29, 2579-2587.	2.3	81
117	The Structures and Electrochemistry of Schiff Base Compounds Bearing Ferrocene and Triazole. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 256-260.	0.6	4
118	Catalysis of the coupling reaction of aryl chlorides with bis(pinacolato)diboron by tricyclohexylphosphine-cyclopalladated ferrocenylimine complexes. Transition Metal Chemistry, 2009, 34, 175-179.	1.4	26
119	Catalysis of the Suzuki–Miyaura coupling reaction in water by heteroannular cyclopalladated ferrocenylimine complexes. Transition Metal Chemistry, 2009, 34, 683-688.	1.4	2
120	Facile synthesis of achiral and chiral PCN pincer palladium(II) complexes and their application in the Suzuki and copper-free Sonogashira cross-coupling reactions. Journal of Organometallic Chemistry, 2009, 694, 2555-2561.	1.8	70
121	Chiral NCN Pincer Pt(II) and Pd(II) Complexes with 1,3-Bis(2′-imidazolinyl)benzene: Synthesis via Direct Metalation, Characterization, and Catalytic Activity in the Friedel−Crafts Alkylation Reaction. Organometallics, 2009, 28, 3369-3380.	2.3	75
122	New PCN and PCP Pincer Palladium(II) Complexes:  Convenient Synthesis via Facile One-Pot Phosphorylation/Palladation Reaction and Structural Characterization. Organometallics, 2007, 26, 6487-6492.	2.3	75
123	Synthesis, characterization and photoluminescent properties of platinum complexes with novel bis(imidazoline) pincer ligands. Tetrahedron Letters, 2006, 47, 5033-5036.	1.4	50
124	Direct intramolecular C(sp3)–H bond sulfonamidation to synthesize benzosultam derivatives under metal-free conditions. Organic Chemistry Frontiers, 0, , .	4.5	3