Antonio Celada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9040240/publications.pdf Version: 2024-02-01

ΔΝΤΟΝΙΟ CELADA

#	Article	IF	CITATIONS
1	The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell, 1990, 61, 113-124.	28.9	995
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
3	LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-α. Blood, 2000, 95, 3823-3831.	1.4	271
4	The kinase p38α serves cell type–specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nature Immunology, 2008, 9, 1019-1027.	14.5	250
5	Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB Journal, 2005, 19, 1000-1002.	0.5	248
6	Transcription factors that regulate monocyte/macrophage differentiation. Journal of Leukocyte Biology, 1998, 63, 405-417.	3.3	198
7	Interferon Î ³ Induces the Expression of p21waf-1 and Arrests Macrophage Cell Cycle, Preventing Induction of Apoptosis. Immunity, 1999, 11, 103-113.	14.3	174
8	Differential Voltage-dependent K+ Channel Responses during Proliferation and Activation in Macrophages. Journal of Biological Chemistry, 2003, 278, 46307-46320.	3.4	154
9	Homogeneous Conjugation of Peptides onto Gold Nanoparticles Enhances Macrophage Response. ACS Nano, 2009, 3, 1335-1344.	14.6	148
10	Macrophage Activation: Classical Vs. Alternative. Methods in Molecular Biology, 2009, 531, 29-43.	0.9	140
11	Macrophage Proinflammatory Activation and Deactivation. Advances in Immunology, 2010, 108, 1-20.	2.2	132
12	Peptides conjugated to gold nanoparticles induce macrophage activation. Molecular Immunology, 2009, 46, 743-748.	2.2	130
13	IFN-γ–dependent transcription of MHC class II IA is impaired in macrophages from aged mice. Journal of Clinical Investigation, 2001, 107, 485-493.	8.2	130
14	The Differential Time-course of Extracellular-regulated Kinase Activity Correlates with the Macrophage Response toward Proliferation or Activation. Journal of Biological Chemistry, 2000, 275, 7403-7409.	3.4	124
15	The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. Trends in Immunology, 1999, 20, 184-189.	7.5	119
16	Effect of aging on macrophage function. Experimental Gerontology, 2002, 37, 1325-1331.	2.8	119
17	Arginine Transport via Cationic Amino Acid Transporter 2 Plays a Critical Regulatory Role in Classical or Alternative Activation of Macrophages. Journal of Immunology, 2006, 176, 5918-5924.	0.8	113
18	Decorin inhibits macrophage colony-stimulating factor proliferation of macrophages and enhances cell survival through induction of p27Kip1 and p21Waf1. Blood, 2001, 98, 2124-2133.	1.4	108

#	Article	IF	CITATIONS
19	Immunosenescence of macrophages: reduced MHC class II gene expression. Experimental Gerontology, 2002, 37, 389-394.	2.8	107
20	Molecular Mechanisms Involved in Macrophage Survival, Proliferation, Activation or Apoptosis. Immunobiology, 2001, 204, 543-550.	1.9	106
21	PKCΪμ is involved in JNK activation that mediates LPS-induced TNF-α, which induces apoptosis in macrophages. American Journal of Physiology - Cell Physiology, 2003, 285, C1235-C1245.	4.6	103
22	Different cytokines modulate ubiquitin gene expression in rat skeletal muscle. Cancer Letters, 1998, 133, 83-87.	7.2	98
23	Protein Kinase Cε Is Required for the Induction of Mitogen-Activated Protein Kinase Phosphatase-1 in Lipopolysaccharide-Stimulated Macrophages. Journal of Immunology, 2000, 164, 29-37.	0.8	98
24	Macrophages require different nucleoside transport systems for proliferation and activation. FASEB Journal, 2001, 15, 1979-1988.	0.5	94
25	Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Reports, 2020, 32, 108079.	6.4	93
26	In Vivo Interleukin-6 Protects Neutrophils from Apoptosis in Osteomyelitis. Infection and Immunity, 2004, 72, 3823-3828.	2.2	83
27	Interferon-Î ³ activates multiple pathways to regulate the expression of the genes for major histocompatibility class II I-AÎ ² , tumor necrosis factor and complement component C3 in mouse macrophages. European Journal of Immunology, 1989, 19, 1103-1109.	2.9	82
28	Selective Roles of MAPKs during the Macrophage Response to IFN-γ. Journal of Immunology, 2008, 180, 4523-4529.	0.8	81
29	Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. European Journal of Immunology, 2006, 36, 1516-1526.	2.9	79
30	MacrophAging: A cellular and molecular review. Immunobiology, 2005, 210, 121-126.	1.9	78
31	Lipopolysaccharide-induced Apoptosis of Macrophages Determines the Up-regulation of Concentrative Nucleoside Transporters Cnt1 and Cnt2 through Tumor Necrosis Factor-α-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2001, 276, 30043-30049.	3.4	75
32	Telomere Shortening and Oxidative Stress in Aged Macrophages Results in Impaired STAT5a Phosphorylation. Journal of Immunology, 2009, 183, 2356-2364.	0.8	68
33	Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochemical and Biophysical Research Communications, 2007, 352, 913-918.	2.1	65
34	Lipopolysaccharide Up-Regulates MHC Class II Expression on Dendritic Cells through an AP-1 Enhancer without Affecting the Levels of CIITA. Journal of Immunology, 2007, 178, 6307-6315.	0.8	63
35	Decorin Reverses the Repressive Effect of Autocrine-Produced TGF-Î ² on Mouse Macrophage Activation. Journal of Immunology, 2003, 170, 4450-4456.	0.8	59
36	Regulation of Nucleoside Transport by Lipopolysaccharide, Phorbol Esters, and Tumor Necrosis Factor-α in Human B-lymphocytes. Journal of Biological Chemistry, 1998, 273, 26939-26945.	3.4	56

#	Article	IF	CITATIONS
37	Macrophage colony-stimulating factor-, granulocyte-macrophage colony-stimulating factor-, or IL-3-dependent survival of macrophages, but not proliferation, requires the expression of p21Waf1 through the phosphatidylinositol 3-kinase/Akt pathway. European Journal of Immunology, 2004, 34, 2257-2267.	2.9	54
38	Pattern of KvÎ ² Subunit Expression in Macrophages Depends upon Proliferation and the Mode of Activation. Journal of Immunology, 2005, 174, 4736-4744.	0.8	54
39	JNK1 Is Required for the Induction of Mkp1 Expression in Macrophages during Proliferation and Lipopolysaccharide-dependent Activation. Journal of Biological Chemistry, 2007, 282, 12566-12573.	3.4	52
40	Deacetylase Activity Is Required for STAT5-Dependent GM-CSF Functional Activity in Macrophages and Differentiation to Dendritic Cells. Journal of Immunology, 2008, 180, 5898-5906.	0.8	47
41	LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-α. Blood, 2000, 95, 3823-3831.	1.4	47
42	STAT1 Regulates Lipopolysaccharide- and TNF-α-Dependent Expression of Transporter Associated with Antigen Processing 1 and Low Molecular Mass Polypeptide 2 Genes in Macrophages by Distinct Mechanisms. Journal of Immunology, 2004, 173, 1103-1110.	0.8	45
43	Structure of the Dimeric Exonuclease TREX1 in Complex with DNA Displays a Proline-rich Binding Site for WW Domains. Journal of Biological Chemistry, 2007, 282, 14547-14557.	3.4	45
44	Macrophages and Mitochondria. Advances in Immunology, 2017, 133, 1-36.	2.2	45
45	IFN-γ–mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation. Blood, 2008, 112, 3274-3282.	1.4	44
46	Reciprocal Negative Cross-Talk between Liver X Receptors (LXRs) and STAT1: Effects on IFN-γ–Induced Inflammatory Responses and LXR-Dependent Gene Expression. Journal of Immunology, 2013, 190, 6520-6532.	0.8	44
47	Increased Frequency of HLAâ€DR/v3 in Systemic Lupus Erythematosus. Tissue Antigens, 1980, 15, 283-288.	1.0	43
48	Arginine Transport Is Impaired in C57Bl/6 Mouse Macrophages as a Result of a Deletion in the Promoter of Slc7a2 (CAT2), and Susceptibility to Leishmania Infection Is Reduced. Journal of Infectious Diseases, 2013, 207, 1684-1693.	4.0	42
49	Interferon-Î ³ regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways. Biochemical Journal, 2003, 375, 777-783.	3.7	41
50	The Response of Secondary Genes to Lipopolysaccharides in Macrophages Depends on Histone Deacetylase and Phosphorylation of C/EBPβ. Journal of Immunology, 2014, 192, 418-426.	0.8	41
51	The Exonuclease Trex1 Restrains Macrophage Proinflammatory Activation. Journal of Immunology, 2013, 191, 6128-6135.	0.8	40
52	ILâ€4 blocks M SFâ€dependent macrophage proliferation by inducing p21 ^{Waf1} in a STAT6â€dependent way. European Journal of Immunology, 2009, 39, 514-526.	2.9	39
53	Streptococcus pyogenes –induced cutaneous lymphocyte antigen–positive TÂcell–dependent epidermal cell activation triggers T H 17 responses in patients with guttate psoriasis. Journal of Allergy and Clinical Immunology, 2016, 138, 491-499.e6.	2.9	39
54	CREB and APâ€1 activation regulates MKPâ€1 induction by LPS or Mâ€CSF and their kinetics correlate with macrophage activation <i>versus</i> proliferation. European Journal of Immunology, 2009, 39, 1902-1913.	2.9	38

#	Article	IF	CITATIONS
55	MCPIP1 RNase Is Aberrantly Distributed inÂPsoriatic Epidermis and Rapidly InducedÂbyÂIL-17A. Journal of Investigative Dermatology, 2016, 136, 1599-1607.	0.7	38
56	NBS1 is required for macrophage homeostasis and functional activity in mice. Blood, 2015, 126, 2502-2510.	1.4	37
57	The Expression of MHC Class II Genes in Macrophages Is Cell Cycle Dependent. Journal of Immunology, 2000, 165, 6364-6371.	0.8	35
58	Streptococcus Induces Circulating CLA+ Memory T-Cell-Dependent Epidermal Cell Activation in Psoriasis. Journal of Investigative Dermatology, 2013, 133, 999-1007.	0.7	35
59	Macrophage mitochondrial MFN2 (mitofusin 2) links immune stress and immune response through reactive oxygen species (ROS) production. Autophagy, 2020, 16, 2307-2309.	9.1	35
60	Repression of I-AÎ ² Gene Expression by the Transcription Factor PU.1. Journal of Biological Chemistry, 1995, 270, 24385-24391.	3.4	34
61	High expression of p21Waf1in sarcoid granulomas: a putative role for long-lasting inflammation. Journal of Leukocyte Biology, 2003, 74, 295-301.	3.3	34
62	<scp>MKP</scp> â€1: A critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. European Journal of Immunology, 2012, 42, 1938-1948.	2.9	33
63	Circulating <scp>CLA</scp> + <scp>T</scp> lymphocytes as peripheral cell biomarkers in <scp>T</scp> â€cellâ€mediated skin diseases. Experimental Dermatology, 2013, 22, 439-442.	2.9	33
64	Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology. Frontiers in Molecular Biosciences, 2016, 3, 28.	3.5	33
65	Granulocyte-macrophage colony-stimulating factor increases l-arginine transport through the induction of CAT2 in bone marrow-derived macrophages. American Journal of Physiology - Cell Physiology, 2006, 290, C1364-C1372.	4.6	32
66	From transcription to cell surface expression, the induction of MHC class II I-Aα by interferon-γ in macrophages is regulated at different levels. Immunogenetics, 2001, 53, 136-144.	2.4	31
67	Treatment with Anti-interferon-γ Monoclonal Antibodies Modifies Experimental Autoimmune Encephalomyelitis in Interferon-γ Receptor Knockout Mice. Experimental Neurology, 2001, 172, 460-468.	4.1	30
68	p21 ^{waf1/CIP1} , a CDK inhibitor and a negative feedback system that controls macrophage activation. European Journal of Immunology, 2009, 39, 691-694.	2.9	30
69	Effect of a single ingestion of alcohol on iron absorption. American Journal of Hematology, 1978, 5, 225-237.	4.1	29
70	The PU.1 transcription factor is the product of the putative oncogene Spi-1. Cell, 1990, 61, 1166.	28.9	29
71	Autoregulation mechanism of human neutrophil apoptosis during bacterial infectionâ~†. Molecular Immunology, 2008, 45, 2087-2096.	2.2	29
72	Macrophage-Colony-Stimulating Factor-Induced Proliferation and Lipopolysaccharide-Dependent Activation of Macrophages Requires Raf-1 Phosphorylation to Induce Mitogen Kinase Phosphatase-1 Expression. Journal of Immunology, 2006, 176, 6594-6602.	0.8	28

#	Article	IF	CITATIONS
73	The NOS3 (27-bp repeat, intron 4) polymorphism is associated with susceptibility to osteomyelitis. Nitric Oxide - Biology and Chemistry, 2007, 16, 44-53.	2.7	28
74	Structural and biochemical studies of TREX1 inhibition by metals. Identification of a new active histidine conserved in DEDDh exonucleases. Protein Science, 2008, 17, 2059-2069.	7.6	27
75	Nitric oxide regulates nucleoside transport in activated B lymphocytes. Journal of Leukocyte Biology, 2000, 67, 345-349.	3.3	26
76	NMR Structural Studies of the ItchWW3 Domain Reveal that Phosphorylation at T30 Inhibits the Interaction with PPxY-Containing Ligands. Structure, 2007, 15, 473-483.	3.3	25
77	Liver X Receptors Inhibit Macrophage Proliferation through Downregulation of Cyclins D1 and B1 and Cyclin-Dependent Kinases 2 and 4. Journal of Immunology, 2011, 186, 4656-4667.	0.8	25
78	Bax gene G(-248)A promoter polymorphism is associated with increased lifespan of the neutrophils of patients with osteomyelitis. Genetics in Medicine, 2007, 9, 249-255.	2.4	23
79	Macrophage colony-stimulating factor-dependent macrophage proliferation is mediated through a calcineurin-independent but immunophilin-dependent mechanism that mediates the activation of external regulated kinases. European Journal of Immunology, 2003, 33, 3091-3100.	2.9	22
80	The expression of I-A correlates with the uptake of interferon-Î ³ by macrophages. European Journal of Immunology, 1989, 19, 205-208.	2.9	20
81	Cyclophilin A is required for M-CSF-dependent macrophage proliferation. European Journal of Immunology, 2006, 36, 2515-2524.	2.9	20
82	Microbe-Dependent Induction of IL-9 by CLA+ T Cells in Psoriasis and Relationship with IL-17A. Journal of Investigative Dermatology, 2018, 138, 580-587.	0.7	20
83	Arginine and Macrophage Activation. Methods in Molecular Biology, 2012, 844, 223-235.	0.9	18
84	Characterization ofTrex1Induction by IFN-Î ³ in Murine Macrophages. Journal of Immunology, 2011, 186, 2299-2308.	0.8	17
85	Deacetylation of <scp>C</scp> / <scp>EBP</scp> β is required for <scp>IL</scp> â€4â€induced <i>arginaseâ€I</i> expression in murine macrophages. European Journal of Immunology, 2012, 42, 3028-3037.	2.9	17
86	Specific IgA and CLA+ T-Cell IL-17 Response to Streptococcus pyogenes in Psoriasis. Journal of Investigative Dermatology, 2020, 140, 1364-1370.e1.	0.7	17
87	Reduced Leucocyte Alkaline Phosphatase Activity and Decreased NBT Reduction Test in Induced Iron Deficiency Anaemia in Rabbits. British Journal of Haematology, 1979, 43, 457-463.	2.5	14
88	Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells. PLoS Neglected Tropical Diseases, 2011, 5, e1398.	3.0	13
89	Molecular and Cellular Aspects of Macrophage Aging. , 2009, , 919-945.		12
90	Iron Overload in a Nonâ€Transfused Patient with Thalassaemia Intermedia. Scandinavian Journal of Haematology, 1982, 28, 169-174.	0.0	11

#	Article	IF	CITATIONS
91	ILâ€15 and ILâ€23 synergize to trigger Th17 response by CLA ⁺ T cells in psoriasis. Experimental Dermatology, 2020, 29, 630-638.	2.9	11
92	CLA+ T Cell Response to Microbes in Psoriasis. Frontiers in Immunology, 2018, 9, 1488.	4.8	10
93	Induction of CIITA by IFN- \hat{I}^3 in macrophages involves STAT1 activation by JAK and JNK. Immunobiology, 2021, 226, 152114.	1.9	10
94	Interplay between Humoral and CLA+ T Cell Response against Candida albicans in Psoriasis. International Journal of Molecular Sciences, 2021, 22, 1519.	4.1	10
95	Basis of Plasma Iron Exchange in the Rabbit. Journal of Clinical Investigation, 1982, 70, 769-779.	8.2	9
96	The Translational Relevance of Human Circulating Memory Cutaneous Lymphocyte-Associated Antigen Positive T Cells in Inflammatory Skin Disorders. Frontiers in Immunology, 2021, 12, 652613.	4.8	8
97	DNFB-DNS hapten-induced colitis in mice should not be considered a model of inflammatory bowel disease5. Inflammatory Bowel Diseases, 2011, 17, 2087-2101.	1.9	7
98	GM-CSF Protects Macrophages from DNA Damage by Inducing Differentiation. Cells, 2022, 11, 935.	4.1	7
99	Repression Mechanisms of the I-AÎ ² Gene of the Major Histocompatibility Complex. Immunobiology, 1997, 198, 249-263.	1.9	6
100	Frequency and Clinical and Transfusional Significance of Rheumatoid Factor in Patients with Haemophilia and von Willebrand's Disease ¹ . Vox Sanguinis, 1984, 47, 271-275.	1.5	5
101	Identification of the transcription factors NF-YA and NF-YB as factors A and B that bound to the promoter of the major histocompatibility complex class II gene I-A β. Biochemical Journal, 1996, 317, 771-777.	3.7	5
102	The locus control region of the MHC class II promoter acts as a repressor element, the activity of which is inhibited by CIITA. Molecular Immunology, 2010, 47, 825-832.	2.2	5
103	Identification of a transcription factor that binds to the S box of the I-A Î ² gene of the major histocompatibility complex. Biochemical Journal, 1996, 313, 737-744.	3.7	4
104	Induction of Samhd1 by interferon gamma and lipopolysaccharide in murine macrophages requiresÂlRF1. European Journal of Immunology, 2020, 50, 1321-1334.	2.9	3
105	Molecular and Cellular Aspects of Macrophage Aging. , 2019, , 1631-1663.		3
106	MACROCYTOSIS IN PREGNANCY: IRON AS LIMITING FACTOR. British Journal of Haematology, 1982, 51, 662-663.	2.5	2
107	AUTOIMMUNE HAEMOLYTIC ANAEMIA AND APLASTIC CRISIS. British Journal of Haematology, 1984, 57, 178-179.	2.5	2
108	Mechanism of I-AÎ ² gene expression. Microbes and Infection, 1999, 1, 935-941.	1.9	2

#	Article	IF	CITATIONS
109	Granulocyte Macrophage-Colony-Stimulating Factor-Dependent Proliferation Is Impaired in Macrophages From Senescence-Accelerated Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 1161-1167.	3.6	2
110	Effect of Thiamphenicol on Iron Absorption. Acta Haematologica, 1980, 63, 289-291.	1.4	0
111	Increased bone marrow blood flow in acute hemolytic anemia is due to an increase of the erythropoiesis. American Journal of Hematology, 1986, 23, 409-409.	4.1	0
112	Inorganic nanoparticles and the immune system: detection, selective activation and tolerance. , 2012, , .		0
113	l-Arginine and Macrophages: Role in Classical and Alternative Activation. , 2017, , 117-129.		0
114	Role of Neutrophils Apoptosis in Osteomyelitis Pathogenesis. Clinical Microbiology (Los Angeles,) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

32.
