Feng Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9038476/publications.pdf Version: 2024-02-01

		331670	414414
31	1,896	21	32
papers	citations	h-index	g-index
33	33	33	3590
all docs	docs citations	times ranked	citing authors

FENC SHAO

#	Article	IF	CITATIONS
1	Nanoscale Chemical Imaging of Coadsorbed Thiolate Self-Assembled Monolayers on Au(111) by Tip-Enhanced Raman Spectroscopy. Analytical Chemistry, 2022, 94, 1645-1653.	6.5	5
2	In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
3	Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer <i>via</i> [4+4]-photocycloaddition. Chemical Communications, 2021, 57, 5794-5797.	4.1	3
4	Direct Synthesis of Crystalline Graphtetrayne—A New Graphyne Allotrope. CCS Chemistry, 2021, 3, 1368-1375.	7.8	26
5	In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nature Communications, 2021, 12, 4557.	12.8	24
6	Interfacial Synthesis of a Monolayered Fluorescent Twoâ€Dimensional Polymer through Dynamic Imine Chemistry. ChemistryOpen, 2020, 9, 381-385.	1.9	7
7	Interfacial synthesis of crystalline two-dimensional cyano-graphdiyne. Chemical Communications, 2020, 56, 3210-3213.	4.1	44
8	Structure Elucidation of 2D Polymer Monolayers Based on Crystallization Estimates Derived from Tip-Enhanced Raman Spectroscopy (TERS) Polymerization Conversion Data. Journal of the American Chemical Society, 2019, 141, 9867-9871.	13.7	23
9	Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Analytical and Bioanalytical Chemistry, 2019, 411, 37-61.	3.7	104
10	Chemical Mapping of Nanodefects within 2D Covalent Monolayers by Tip-Enhanced Raman Spectroscopy. ACS Nano, 2018, 12, 5021-5029.	14.6	45
11	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie, 2018, 130, 2377-2380.	2.0	7
12	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 2353-2356.	13.8	89
13	Nanoscale Chemical Imaging of Reversible Photoisomerization of an Azobenzeneâ€Thiol Selfâ€Assembled Monolayer by Tipâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 1025-1029.	13.8	32
14	Nanoscale Chemical Imaging of Reversible Photoisomerization of an Azobenzeneâ€Thiol Selfâ€Assembled Monolayer by Tipâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2018, 130, 1037-1041.	2.0	14
15	Nanoscale Chemical Imaging of Interfacial Monolayers by Tipâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 9361-9366.	13.8	32
16	Nanoscale Chemical Imaging of Interfacial Monolayers by Tipâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2017, 129, 9489-9494.	2.0	7
17	Strongly enhanced Raman scattering of Cu-phthalocyanine sandwiched between graphene and Au(111). Chemical Communications, 2017, 53, 724-727.	4.1	6
18	Structural Characterization of a Covalent Monolayer Sheet Obtained by Twoâ€Dimensional Polymerization at an Air/Water Interface. Angewandte Chemie, 2017, 129, 15464-15468.	2.0	5

Feng Shao

#	Article	IF	CITATIONS
19	Structural Characterization of a Covalent Monolayer Sheet Obtained by Twoâ€Dimensional Polymerization at an Air/Water Interface. Angewandte Chemie - International Edition, 2017, 56, 15262-15266.	13.8	39
20	Synthesis of a Twoâ€Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface. Angewandte Chemie - International Edition, 2016, 55, 213-217.	13.8	276
21	Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions. Analytical and Bioanalytical Chemistry, 2015, 407, 8197-8204.	3.7	11
22	Microwave-assisted synthesis of high-quality CdTe/CdS@ZnS–SiO2 near-infrared-emitting quantum dots and their applications in Hg2+ sensing and imaging. Sensors and Actuators B: Chemical, 2015, 207, 74-82.	7.8	26
23	Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 2014, 6, 1879-1889.	5.6	504
24	Intravital imaging of Bacillus thuringiensis Cry1A toxin binding sites in the midgut of silkworm. Analytical Biochemistry, 2014, 447, 90-97.	2.4	6
25	Biocompatible and Highly Luminescent Near-Infrared CuInS ₂ /ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging. ACS Applied Materials & Interfaces, 2014, 6, 2011-2017.	8.0	109
26	Hierarchical Nanogaps within Bioscaffold Arrays as a High-Performance SERS Substrate for Animal Virus Biosensing. ACS Applied Materials & Interfaces, 2014, 6, 6281-6289.	8.0	105
27	Hydrogen-bonding recognition-induced aggregation of gold nanoparticles for the determination of the migration of melamine monomers using dynamic light scattering. Analytica Chimica Acta, 2014, 845, 92-97.	5.4	23
28	Stretch–Stowage–Growth Strategy to Fabricate Tunable Triply-Amplified Electrochemiluminescence Immunosensor for Ultrasensitive Detection of Pseudorabies Virus Antibody. Analytical Chemistry, 2014, 86, 5749-5757.	6.5	49
29	Facile synthesis of Cu–In–Zn–S alloyed nanocrystals with temperature-dependent photoluminescence spectra. Materials Letters, 2014, 119, 100-103.	2.6	17
30	Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chemical Communications, 2013, 49, 6024.	4.1	114
31	Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide–Ag nanoparticle composites as labels. Analyst, The, 2013, 138, 3388.	3.5	31