Justin G Julander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/903846/publications.pdf

Version: 2024-02-01

67 papers

3,551 citations

32 h-index 58 g-index

71 all docs

71 docs citations

71 times ranked 5124 citing authors

#	Article	IF	CITATIONS
1	AT-752, a double prodrug of a guanosine nucleotide analog, inhibits yellow fever virus in a hamster model. PLoS Neglected Tropical Diseases, 2022, 16, e0009937.	3.0	7
2	Therapeutic and prophylactic treatment with a virus-specific antibody is highly effective in rodent models of Chikungunya infection and disease. Antiviral Research, 2022, 202, 105295.	4.1	4
3	Isolation of a Potently Neutralizing and Protective Human Monoclonal Antibody Targeting Yellow Fever Virus. MBio, 2022, 13, e0051222.	4.1	7
4	Remdesivir efficacy against yellow fever in a hamster model. Antiviral Research, 2022, 203, 105331.	4.1	4
5	Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Neglected Tropical Diseases, 2021, 15, e0009195.	3.0	14
6	Evaluation of AT-752, a Double Prodrug of a Guanosine Nucleotide Analog with <i>In Vitro</i> and <i>In Vivo</i> Activity against Dengue and Other Flaviviruses. Antimicrobial Agents and Chemotherapy, 2021, 65, e0098821.	3.2	19
7	An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Research, 2021, 195, 105180.	4.1	47
8	Structure activity relationship of novel antiviral nucleosides against Enterovirus A71. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127599.	2.2	4
9	Strain-dependent disease and response to favipiravir treatment in mice infected with Chikungunya virus. Antiviral Research, 2020, 182, 104904.	4.1	9
10	Development, Characterization, and Application of Two Reporter-Expressing Recombinant Zika Viruses. Viruses, 2020, 12, 572.	3.3	7
11	Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Research, 2020, 176, 104749.	4.1	39
12	Zika Virus Associated Pathology and Antigen Presence in the Testicle in the Absence of Sexual Transmission During Subacute to Chronic Infection in a Mouse Model. Scientific Reports, 2019, 9, 8325.	3.3	10
13	Efficacy of a ML336 derivative against Venezuelan and eastern equine encephalitis viruses. Antiviral Research, 2019, 167, 25-34.	4.1	16
14	Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters. Viruses, 2019, 11, 92.	3.3	7
15	Zika virus-induced acute myelitis and motor deficits in adult interferon $\hat{l}\pm\hat{l}^2/\hat{l}^3$ receptor knockout mice. Journal of NeuroVirology, 2018, 24, 273-290.	2.1	27
16	Comparative Histopathologic Lesions of the Male Reproductive Tract during Acute Infection of Zika Virus in AG129 and Ifnar Mice. American Journal of Pathology, 2018, 188, 904-915.	3.8	34
17	Coitus-Free Sexual Transmission of Zika Virus in a Mouse Model. Scientific Reports, 2018, 8, 15379.	3.3	20
18	Consequences of in utero exposure to Zika virus in offspring of AG129 mice. Scientific Reports, 2018, 8, 9384.	3.3	27

#	Article	IF	CITATIONS
19	Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model. Frontiers in Immunology, 2018, 9, 1756.	4.8	19
20	Functional Genomics and Immunologic Tools: The Impact of Viral and Host Genetic Variations on the Outcome of Zika Virus Infection. Viruses, 2018, 10, 422.	3.3	13
21	Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, 2017, 168, 1114-1125.e10.	28.9	633
22	Zika virus infection of adult and fetal STAT2 knock-out hamsters. Virology, 2017, 507, 89-95.	2.4	49
23	Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Research, 2017, 137, 14-22.	4.1	132
24	Small-Animal Models of Zika Virus. Journal of Infectious Diseases, 2017, 216, S919-S927.	4.0	22
25	BCX4430 \hat{a} \in A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. Journal of Infection and Public Health, 2016, 9, 220-226.	4.1	149
26	A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein. Journal of Virology, 2016, 90, 10774-10788.	3.4	37
27	Complete Genome Sequences of Three Historically Important, Spatiotemporally Distinct, and Genetically Divergent Strains of Zika Virus: MR-766, P6-740, and PRVABC-59. Genome Announcements, 2016, 4, .	0.8	33
28	Animal models of yellow fever and their application in clinical research. Current Opinion in Virology, 2016, 18, 64-69.	5.4	31
29	Development of a Hyperglycosylated IFN Alfacon-1 (CIFN): Toward Bimonthly or Monthly Dosing for Antiviral Therapies. Journal of Interferon and Cytokine Research, 2015, 35, 621-633.	1.2	2
30	Innate Immune Protection against Infectious Diseases by Pulmonary Administration of a Phospholipid-Conjugated TLR7 Ligand. Journal of Innate Immunity, 2014, 6, 315-324.	3.8	16
31	Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2. PLoS Pathogens, 2014, 10, e1004213.	4.7	34
32	BCX4430, a Novel Nucleoside Analog, Effectively Treats Yellow Fever in a Hamster Model. Antimicrobial Agents and Chemotherapy, 2014, 58, 6607-6614.	3.2	81
33	The use of plethysmography in determining the severity of lung pathology in a mouse model of minimally lethal influenza virus infection. Antiviral Research, 2014, 108, 10-13.	4.1	11
34	Protection against Chikungunya virus induced arthralgia following prophylactic treatment with adenovirus vectored interferon (mDEF201). Antiviral Research, 2014, 108, 1-9.	4.1	15
35	Humanized monoclonal antibody 2C9-clgG has enhanced efficacy for yellow fever prophylaxis and therapy in an immunocompetent animal model. Antiviral Research, 2014, 103, 32-38.	4.1	16
36	Experimental therapies for yellow fever. Antiviral Research, 2013, 97, 169-179.	4.1	33

#	Article	IF	CITATIONS
37	A Mouse Model of Chikungunya Virus with Utility in Antiviral Studies. Methods in Molecular Biology, 2013, 1030, 439-448.	0.9	4
38	Treatment of oseltamivir-resistant influenza A (H1N1) virus infections in mice with antiviral agents. Antiviral Research, 2012 , 96 , $13-20$.	4.1	18
39	Efficacy of Combined Therapy with Amantadine, Oseltamivir, and Ribavirin In Vivo against Susceptible and Amantadine-Resistant Influenza A Viruses. PLoS ONE, 2012, 7, e31006.	2.5	84
40	Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15978-15983.	7.1	89
41	Immune correlates of protection against yellow fever determined by passive immunization and challenge in the hamster model. Vaccine, 2011, 29, 6008-6016.	3.8	63
42	Treatment of Yellow Fever Virus with an Adenovirus-Vectored Interferon, DEF201, in a Hamster Model. Antimicrobial Agents and Chemotherapy, 2011, 55, 2067-2073.	3.2	41
43	Use of plethysmography in assessing the efficacy of antivirals in a mouse model of pandemic influenza A virus. Antiviral Research, 2011, 92, 228-236.	4.1	16
44	Important Advances in the Field of Anti-Dengue Virus Research. Antiviral Chemistry and Chemotherapy, 2011, 21, 105-116.	0.6	26
45	Efficacy of 2′-C-methylcytidine against yellow fever virus in cell culture and in a hamster model. Antiviral Research, 2010, 86, 261-267.	4.1	42
46	PSI-7851, a Pronucleotide of β- <scp>d</scp> -2′-Deoxy-2′-Fluoro-2′- <i>C</i> -Methyluridine Monophosphate, Is a Potent and Pan-Genotype Inhibitor of Hepatitis C Virus Replication. Antimicrobial Agents and Chemotherapy, 2010, 54, 3187-3196.	3.2	137
47	Assessing changes in vascular permeability in a hamster model of viral hemorrhagic fever. Virology Journal, 2010, 7, 240.	3.4	32
48	Inactivated yellow fever 17D vaccine: Development and nonclinical safety, immunogenicity and protective activity. Vaccine, 2010, 28, 3827-3840.	3.8	85
49	Activity of T-705 in a Hamster Model of Yellow Fever Virus Infection in Comparison with That of a Chemically Related Compound, T-1106. Antimicrobial Agents and Chemotherapy, 2009, 53, 202-209.	3.2	122
50	T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Research, 2009, 82, 95-102.	4.1	393
51	Effect of T-705 treatment on western equine encephalitis in a mouse model. Antiviral Research, 2009, 82, 169-171.	4.1	57
52	A heterocyclic molecule with significant activity against dengue virus. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1425-1427.	2.2	45
53	C3H/HeN mouse model for the evaluation of antiviral agents for the treatment of Venezuelan equine encephalitis virus infection. Antiviral Research, 2008, 78, 230-241.	4.1	48
54	Treatment of Venezuelan equine encephalitis virus infection with (â^')-carbodine. Antiviral Research, 2008, 80, 309-315.	4.1	37

#	Article	IF	CITATIONS
55	Defining Limits of Treatment with Humanized Neutralizing Monoclonal Antibody for West Nile Virus Neurological Infection in a Hamster Model. Antimicrobial Agents and Chemotherapy, 2007, 51, 2396-2402.	3.2	56
56	Activity of T-1106 in a Hamster Model of Yellow Fever Virus Infection. Antimicrobial Agents and Chemotherapy, 2007, 51, 1962-1966.	3.2	40
57	Novel 3-sulphonamido-quinazolin-4($3 < i > H < / i >$)-One Derivatives: Microwave-Assisted Synthesis and Evaluation of Antiviral Activities against Respiratory and Biodefense Viruses. Antiviral Chemistry and Chemotherapy, 2007, 18, 301-305.	0.6	17
58	Comparison of the inhibitory effects of interferon alfacon-1 and ribavirin on yellow fever virus infection in a hamster model. Antiviral Research, 2007, 73, 140-146.	4.1	50
59	Prophylactic treatment with recombinant Eimeria protein, alone or in combination with an agonist cocktail, protects mice from Banzi virus infection. Antiviral Research, 2007, 75, 14-19.	4.1	8
60	West Nile virus infection of the placenta. Virology, 2006, 347, 175-182.	2.4	32
61	Treatment of West Nile virus-infected mice with reactive immunoglobulin reduces fetal titers and increases dam survival. Antiviral Research, 2005, 65, 79-85.	4.1	35
62	Error-prone replication of West Nile virus caused by ribavirin. Antiviral Research, 2005, 67, 38-45.	4.1	84
63	Anti-Hepatitis B Virus Activity of ORI-9020, a Novel Phosphorothioate Dinucleotide, in a Transgenic Mouse Model. Antimicrobial Agents and Chemotherapy, 2004, 48, 2318-2320.	3.2	23
64	Effect of Interferon-Alpha and Interferon-Inducers on West Nile Virus in Mouse and Hamster Animal Models. Antiviral Chemistry and Chemotherapy, 2004, 15, 67-75.	0.6	112
65	Modeling hamsters for evaluating West Nile virus therapies. Antiviral Research, 2004, 63, 41-50.	4.1	41
66	Characterization of antiviral activity of entecavir in transgenic mice expressing hepatitis B virus. Antiviral Research, 2003, 59, 155-161.	4.1	40
67	Characterizing antiviral activity of adefovir dipivoxil in transgenic mice expressing hepatitis B virus. Antiviral Research, 2002, 55, 27-40.	4.1	46