
## Seung-Taek Myung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/903757/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rechargeable zinc-ion batteries with manganese dioxide cathode: How critical is choice of manganese dioxide polymorphs in aqueous solutions?. Journal of Power Sources, 2022, 523, 231023.                   | 7.8  | 14        |
| 2  | Facilitating sustainable oxygen-redox chemistry for P3-type cathode materials for sodium-ion batteries. Energy Storage Materials, 2022, 46, 329-343.                                                         | 18.0 | 11        |
| 3  | Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries. Energy Storage Materials, 2022, 46, 76-89.                          | 18.0 | 14        |
| 4  | Sulfurized Carbon Composite with Unprecedentedly High Tap Density for Sodium Storage. Advanced<br>Energy Materials, 2022, 12, .                                                                              | 19.5 | 2         |
| 5  | Hysteresisâ€Suppressed Reversible Oxygenâ€Redox Cathodes for Sodiumâ€Ion Batteries. Advanced Energy<br>Materials, 2022, 12, .                                                                                | 19.5 | 42        |
| 6  | Single-crystalline particle Ni-based cathode materials for lithium-ion batteries: Strategies, status, and challenges to improve energy density and cyclability. Energy Storage Materials, 2022, 51, 568-587. | 18.0 | 22        |
| 7  | Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite<br>Composite for Lithium Ion Batteries. Energy Storage Materials, 2021, 35, 550-576.                         | 18.0 | 248       |
| 8  | WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance<br>Lithium-Sulfur Batteries. Molecules, 2021, 26, 377.                                                        | 3.8  | 12        |
| 9  | Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. Journal of Materials Chemistry A, 2021, 9, 15140-15178.                                      | 10.3 | 39        |
| 10 | Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy and Environmental<br>Science, 2021, 14, 844-852.                                                                             | 30.8 | 174       |
| 11 | An exceptionally large energy cathode with the K–SO <sub>4</sub> –Cu conversion reaction for potassium rechargeable batteries. Journal of Materials Chemistry A, 2021, 9, 5475-5484.                         | 10.3 | 3         |
| 12 | Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodiumâ€Ion Batteries.<br>Advanced Energy Materials, 2021, 11, 2003399.                                                           | 19.5 | 24        |
| 13 | A New Approach to Stable Cationic and Anionic Redox Activity in O3â€Layered Cathode for Sodiumâ€lon<br>Batteries. Advanced Energy Materials, 2021, 11, 2100901.                                              | 19.5 | 24        |
| 14 | Promising sodium storage of bismuthinite by conversion chemistry. Energy Storage Materials, 2021, 38, 241-248.                                                                                               | 18.0 | 16        |
| 15 | Recent Advances in Electrode Materials with Anion Redox Chemistry for Sodium-Ion Batteries. Energy<br>Material Advances, 2021, 2021, .                                                                       | 11.0 | 40        |
| 16 | Gifts from Nature: Bioâ€Inspired Materials for Rechargeable Secondary Batteries. Advanced Materials,<br>2021, 33, e2006019.                                                                                  | 21.0 | 30        |
| 17 | Long Life Anode Material for Potassium Ion Batteries with High-Rate Potassium Storage. Energy<br>Storage Materials, 2021, 40, 197-208.                                                                       | 18.0 | 18        |
| 18 | Highly concentrated electrolyte enabling high-voltage application of metallic components for potassium-ion batteries. Journal of Power Sources, 2021, 510, 230436.                                           | 7.8  | 8         |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Rational design of Co-free layered cathode material for sodium-ion batteries. Journal of Power<br>Sources, 2021, 514, 230581.                                                                                                         | 7.8  | 20        |
| 20 | Bismuth telluride anode boosting highly reversible electrochemical activity for potassium storage.<br>Energy Storage Materials, 2021, 43, 411-421.                                                                                    | 18.0 | 15        |
| 21 | Na <sub>2</sub> Fe <sub>2</sub> F <sub>7</sub> : a fluoride-based cathode for high power and long life<br>Na-ion batteries. Energy and Environmental Science, 2021, 14, 1469-1479.                                                    | 30.8 | 16        |
| 22 | Bioâ€Derived Surface Layer Suitable for Long Term Cycling Niâ€Rich Cathode for Lithiumâ€lon Batteries.<br>Small, 2021, 17, e2104532.                                                                                                  | 10.0 | 7         |
| 23 | Facile migration of potassium ions in a ternary P3-type K0.5[Mn0.8Fe0.1Ni0.1]O2 cathode in rechargeable potassium batteries. Energy Storage Materials, 2020, 25, 714-723.                                                             | 18.0 | 57        |
| 24 | New conversion chemistry of CuSO4 as ultra-high-energy cathode material for rechargeable sodium battery. Energy Storage Materials, 2020, 24, 458-466.                                                                                 | 18.0 | 20        |
| 25 | Pulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content. Journal of Power Sources, 2020, 450, 227605.                                                                                                | 7.8  | 7         |
| 26 | Development of a New Mixed-Polyanion Cathode with Superior Electrochemical Performances for Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 163-171.                                                            | 6.7  | 20        |
| 27 | Recent Progress and Perspective of Advanced Highâ€Energy Coâ€Less Niâ€Rich Cathodes for Liâ€Ion Batteries:<br>Yesterday, Today, and Tomorrow. Advanced Energy Materials, 2020, 10, 2002027.                                           | 19.5 | 221       |
| 28 | A new pre-sodiation additive for sodium-ion batteries. Energy Storage Materials, 2020, 32, 281-289.                                                                                                                                   | 18.0 | 43        |
| 29 | Exceptionally high-energy tunnel-type V1.5Cr0.5O4.5H nanocomposite as a novel cathode for Na-ion batteries. Nano Energy, 2020, 77, 105175.                                                                                            | 16.0 | 10        |
| 30 | KV3O8 with a large interlayer as a viable cathode material for zinc-ion batteries. Journal of Power Sources, 2020, 478, 229072.                                                                                                       | 7.8  | 15        |
| 31 | High-power rhombohedral-Fe2(SO4)3 with outstanding cycle-performance as Fe-based cathode for<br>K-ion batteries. Energy Storage Materials, 2020, 33, 276-282.                                                                         | 18.0 | 12        |
| 32 | New Insight on Openâ€Structured Sodium Vanadium Oxide as Highâ€Capacity and Long Life Cathode for<br>Zn–Ion Storage: Structure, Electrochemistry, and Firstâ€Principles Calculation. Advanced Energy<br>Materials, 2020, 10, 2001595. | 19.5 | 54        |
| 33 | High-Voltage Stability in KFSI Nonaqueous Carbonate Solutions for Potassium-Ion Batteries: Current<br>Collectors and Coin-Cell Components. ACS Applied Materials & Interfaces, 2020, 12, 42723-42733.                                 | 8.0  | 17        |
| 34 | Co-Free Layered Cathode Materials for High Energy Density Lithium-Ion Batteries. ACS Energy Letters, 2020, 5, 1814-1824.                                                                                                              | 17.4 | 117       |
| 35 | Highâ€Voltage Oxygenâ€Redoxâ€Based Cathode for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy<br>Materials, 2020, 10, 2001111.                                                                                                   | 19.5 | 72        |
| 36 | Understanding the role of trace amount of Fe incorporated in Ni-rich Li[Ni1-x-yCoxMny]O2 cathode material. Journal of Alloys and Compounds, 2020, 835, 155342.                                                                        | 5.5  | 33        |

| #  | Article                                                                                                                                                                                                                                       | IF           | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 37 | Mnâ€Rich P′2â€Na <sub>0.67</sub> [Ni <sub>0.1</sub> Fe <sub>0.1</sub> Mn <sub>0.8</sub> ]O <sub>2Highâ€Energyâ€Density and Longâ€Life Cathode Material for Sodiumâ€Ion Batteries. Advanced Energy<br/>Materials, 2020, 10, 2001346.</sub>     | > as<br>19.5 | 50        |
| 38 | Nature-Derived Cellulose-Based Composite Separator for Sodium-Ion Batteries. Frontiers in Chemistry, 2020, 8, 153.                                                                                                                            | 3.6          | 30        |
| 39 | Revealing sodium storage mechanism in lithium titanium phosphate: Combined experimental and theoretical study. Journal of Power Sources, 2020, 455, 227976.                                                                                   | 7.8          | 13        |
| 40 | Construction of silica-oxygen-borate hybrid networks on Al2O3-coated polyethylene separators<br>realizing multifunction for high-performance lithium ion batteries. Journal of Power Sources, 2020,<br>472, 228445.                           | 7.8          | 36        |
| 41 | An optimized approach toward high energy density cathode material for K-ion batteries. Energy<br>Storage Materials, 2020, 27, 342-351.                                                                                                        | 18.0         | 37        |
| 42 | Development of K4Fe3(PO4)2(P2O7) as a novel Fe-based cathode with high energy densities and excellent cyclability in rechargeable potassium batteries. Energy Storage Materials, 2020, 28, 47-54.                                             | 18.0         | 32        |
| 43 | Oxalate-Based High-Capacity Conversion Anode for Potassium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 3743-3750.                                                                                                            | 6.7          | 15        |
| 44 | Synthesis and Electrochemical Reaction of a Pitch Carbon-Coated Zinc Vanadium Oxide Anode with<br>Excellent Electrochemical Performance for Rechargeable Lithium Batteries. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 1908-1915. | 6.7          | 8         |
| 45 | P2â€K <sub>0.75</sub> [Ni <sub>1/3</sub> Mn <sub>2/3</sub> ]O <sub>2</sub> Cathode Material for High<br>Power and Long Life Potassiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 1903605.                                           | 19.5         | 50        |
| 46 | Development of Novel Cathode with Large Lithium Storage Mechanism Based on Pyrophosphateâ€Based<br>Conversion Reaction for Rechargeable Lithium Batteries. Small Methods, 2020, 4, 1900847.                                                   | 8.6          | 5         |
| 47 | Good practice guide for papers on batteries for the Journal of Power Sources. Journal of Power<br>Sources, 2020, 452, 227824.                                                                                                                 | 7.8          | 34        |
| 48 | KTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> Electrode with a Long Cycling Stability for<br>Potassiumâ€ion Batteries. Small, 2020, 16, e2001090.                                                                                          | 10.0         | 35        |
| 49 | Cycling Stability of Layered Potassium Manganese Oxide in Nonaqueous Potassium Cells. ACS Applied<br>Materials & Interfaces, 2019, 11, 27770-27779.                                                                                           | 8.0          | 38        |
| 50 | Controlled Oxygen Redox for Excellent Power Capability in Layered Sodiumâ€Based Compounds.<br>Advanced Energy Materials, 2019, 9, 1901181.                                                                                                    | 19.5         | 49        |
| 51 | P2-Na <sub>2/3</sub> MnO <sub>2</sub> by Co Incorporation: As a Cathode Material of High Capacity<br>and Long Cycle Life for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11,<br>28928-28933.                              | 8.0          | 41        |
| 52 | The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries. ACS Nano, 2019, 13, 11707-11716.                                                                                                                          | 14.6         | 13        |
| 53 | Layered K <sub>0.28</sub> MnO <sub>2</sub> ·0.15H <sub>2</sub> O as a Cathode Material for<br>Potassium-Ion Intercalation. ACS Applied Materials & Interfaces, 2019, 11, 43312-43319.                                                         | 8.0          | 25        |
| 54 | Unveiling yavapaiite-type K Fe(SO4)2 as a new Fe-based cathode with outstanding electrochemical performance for potassium-ion batteries. Nano Energy, 2019, 66, 104184.                                                                       | 16.0         | 28        |

| #  | Article                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries.<br>Journal of Materials Chemistry A, 2019, 7, 3903-3909.                                                                                                                                | 10.3 | 41        |
| 56 | Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A, 2019, 7, 202-211.                                                                                                                              | 10.3 | 39        |
| 57 | Nb-Doped titanium phosphate for sodium storage: electrochemical performance and structural insights. Journal of Materials Chemistry A, 2019, 7, 5748-5759.                                                                                                                                | 10.3 | 24        |
| 58 | Potassium vanadate as a new cathode material for potassium-ion batteries. Journal of Power Sources, 2019, 432, 24-29.                                                                                                                                                                     | 7.8  | 53        |
| 59 | Development of Na2FePO4F/Conducting-Polymer composite as an exceptionally high performance cathode material for Na-ion batteries. Journal of Power Sources, 2019, 432, 1-7.                                                                                                               | 7.8  | 29        |
| 60 | Monoclinic Fe2(SO4)3: A new Fe-based cathode material with superior electrochemical performances for Na-ion batteries. Journal of Power Sources, 2019, 434, 226750.                                                                                                                       | 7.8  | 14        |
| 61 | A New Strategy to Build a Highâ€Performance P′2â€Type Cathode Material through Titanium Doping for<br>Sodiumâ€ion Batteries. Advanced Functional Materials, 2019, 29, 1901912.                                                                                                            | 14.9 | 76        |
| 62 | Passivation of aluminum current collectors in non-aqueous carbonate solutions containing sodium or potassium hexafluorophosphate salts. Journal of Materials Chemistry A, 2019, 7, 13012-13018.                                                                                           | 10.3 | 24        |
| 63 | Impact of Na <sub>2</sub> MoO <sub>4</sub> nanolayers autogenously formed on tunnel-type<br>Na <sub>0.44</sub> MnO <sub>2</sub> . Journal of Materials Chemistry A, 2019, 7, 13522-13530.                                                                                                 | 10.3 | 23        |
| 64 | Hollanditeâ€Type VO <sub>1.75</sub> (OH) <sub>0.5</sub> : Effective Sodium Storage for Highâ€Performance<br>Sodiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1900603.                                                                                                           | 19.5 | 16        |
| 65 | Efficient recycling of valuable resources from discarded lithium-ion batteries. Journal of Power Sources, 2019, 426, 259-265.                                                                                                                                                             | 7.8  | 67        |
| 66 | K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy, 2019, 61, 284-294.                                                                                                                                                                  | 16.0 | 120       |
| 67 | Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy, 2019, 59, 197-206.                                                                                                           | 16.0 | 100       |
| 68 | Are type 316L stainless steel coin cells stable in nonaqueous carbonate solutions containing<br>NaPF <sub>6</sub> or KPF <sub>6</sub> salt?. Journal of Materials Chemistry A, 2019, 7, 26250-26260.                                                                                      | 10.3 | 8         |
| 69 | New Insight into Ethylenediaminetetraacetic Acid Tetrasodium Salt as a Sacrificing Sodium Ion Source<br>for Sodium-Deficient Cathode Materials for Full Cells. ACS Applied Materials & Interfaces, 2019, 11,<br>5957-5965.                                                                | 8.0  | 26        |
| 70 | Layered Ni-rich Cathode Materials. , 2019, , 26-43.                                                                                                                                                                                                                                       |      | 2         |
| 71 | Quaternary Transition Metal Oxide Layered Framework: O3-Type<br>Na[Ni <sub>0.32</sub> Fe <sub>0.13</sub> Co <sub>0.15</sub> Mn <sub>0.40</sub> ]O <sub>2</sub><br>Cathode Material for High-Performance Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018,<br>122, 13500-13507. | 3.1  | 39        |
| 72 | Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation. Journal of Materials Chemistry A, 2018, 6, 8558-8567.                                                                                                                                         | 10.3 | 52        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Sodiumâ€lon Batteries: Building Effective Layered Cathode Materials with Longâ€Term Cycling by<br>Modifying the Surface via Sodium Phosphate. Advanced Functional Materials, 2018, 28, 1705968.                                                   | 14.9 | 138       |
| 74 | Bioinspired Surface Layer for the Cathode Material of Highâ€Energyâ€Density Sodiumâ€Ion Batteries.<br>Advanced Energy Materials, 2018, 8, 1702942.                                                                                                | 19.5 | 91        |
| 75 | Exceptional Effect of Benzene in Uniform Carbon Coating of SiO <i><sub>x</sub></i> Nanocomposite<br>for High-Performance Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1247-A1253.                                        | 2.9  | 10        |
| 76 | Rocksalt-type metal sulfide anodes for high-rate sodium storage. Journal of Materials Chemistry A,<br>2018, 6, 6867-6873.                                                                                                                         | 10.3 | 23        |
| 77 | Confinement of nanosized tin(IV) oxide particles on rGO sheets and its application to sodium-ion full cells as a high capacity anode material. Journal of Alloys and Compounds, 2018, 731, 339-346.                                               | 5.5  | 11        |
| 78 | Exceptional effect of glassy lithium fluorophosphate on Mn-rich olivine cathode material for high-performance Li ion batteries. Journal of Power Sources, 2018, 374, 55-60.                                                                       | 7.8  | 4         |
| 79 | Recent Progress in Rechargeable Potassium Batteries. Advanced Functional Materials, 2018, 28, 1802938.                                                                                                                                            | 14.9 | 518       |
| 80 | Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn–Teller Distortion of P′2-Type<br>Na <sub>2/3</sub> MnO <sub>2</sub> : Experimental and Theoretical Studies. ACS Applied Materials &<br>Interfaces, 2018, 10, 40978-40984.     | 8.0  | 49        |
| 81 | Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS<br>Energy Letters, 2018, 3, 2620-2640.                                                                                                             | 17.4 | 676       |
| 82 | Conversion Chemistry of Cobalt Oxalate for Sodium Storage. ACS Applied Materials & Interfaces, 2018, 10, 40523-40530.                                                                                                                             | 8.0  | 10        |
| 83 | Open-Structured Vanadium Dioxide as an Intercalation Host for Zn Ions: Investigation by<br>First-Principles Calculation and Experiments. Chemistry of Materials, 2018, 30, 6777-6787.                                                             | 6.7  | 111       |
| 84 | Highly enhancement of the SiO nanocomposite through Ti-doping and carbon-coating for high-performance Li-ion battery. Journal of Power Sources, 2018, 400, 613-620.                                                                               | 7.8  | 51        |
| 85 | A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Materials Today<br>Energy, 2018, 9, 49-66.                                                                                                                    | 4.7  | 92        |
| 86 | Role of the Mn substituent in Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> for<br>high-rate sodium storage. Journal of Materials Chemistry A, 2018, 6, 16627-16637.                                                             | 10.3 | 58        |
| 87 | Development of P3-K <sub>0.69</sub> CrO <sub>2</sub> as an ultra-high-performance cathode material for K-ion batteries. Energy and Environmental Science, 2018, 11, 2821-2827.                                                                    | 30.8 | 157       |
| 88 | Unexpectedly high electrochemical performances of a monoclinic<br>Na <sub>2.4</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /conductive polymer composite for<br>Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17571-17578. | 10.3 | 19        |
| 89 | Marcasite iron sulfide as a high-capacity electrode material for sodium storage. Journal of Materials<br>Chemistry A, 2018, 6, 17111-17119.                                                                                                       | 10.3 | 26        |
| 90 | Cathode Materials for Future Electric Vehicles and Energy Storage Systems. ACS Energy Letters, 2017, 2, 703-708.                                                                                                                                  | 17.4 | 95        |

| #   | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Hollandite-type Al-doped VO <sub>1.52</sub> (OH) <sub>0.77</sub> as a zinc ion insertion host material.<br>Journal of Materials Chemistry A, 2017, 5, 8367-8375.                                                                                                    | 10.3 | 123       |
| 92  | Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries. Journal of Power Sources, 2017, 355, 140-146.                                                                   | 7.8  | 29        |
| 93  | Structural Stability of LiNiO <sub>2</sub> Cycled above 4.2 V. ACS Energy Letters, 2017, 2, 1150-1155.                                                                                                                                                              | 17.4 | 292       |
| 94  | Graphene Decorated by Indium Sulfide Nanoparticles as High-Performance Anode for Sodium-Ion<br>Batteries. ACS Applied Materials & Interfaces, 2017, 9, 23723-23730.                                                                                                 | 8.0  | 48        |
| 95  | Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46, 3529-3614.                                                                                                                                                                            | 38.1 | 3,436     |
| 96  | Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters, 2017, 2, 196-223.                                                                                                                    | 17.4 | 1,033     |
| 97  | Effect of Mn in<br>Li <sub>3</sub> V <sub>2–<i>x</i></sub> Mn <sub><i>x</i></sub> (PO <sub>4</sub> ) <sub>3</sub> as High<br>Capacity Cathodes for Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 40307-40316.                                     | 8.0  | 30        |
| 98  | Development of a new alluaudite-based cathode material with high power and long cyclability for application in Na ion batteries in real-life. Journal of Materials Chemistry A, 2017, 5, 22334-22340.                                                               | 10.3 | 20        |
| 99  | Tunnel-type β-FeOOH cathode material for high rate sodium storage via a new conversion reaction.<br>Nano Energy, 2017, 41, 687-696.                                                                                                                                 | 16.0 | 41        |
| 100 | Resolving the degradation pathways of the O3-type layered oxide cathode surface through the<br>nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials<br>Chemistry A, 2017, 5, 23671-23680.                           | 10.3 | 107       |
| 101 | Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25941-25951.                                                                          | 8.0  | 35        |
| 102 | Extending the Battery Life Using an Al-Doped<br>Li[Ni <sub>0.76</sub> Co <sub>0.09</sub> Mn <sub>0.15</sub> ]O <sub>2</sub> Cathode with<br>Concentration Gradients for Lithium Ion Batteries. ACS Energy Letters, 2017, 2, 1848-1854.                              | 17.4 | 162       |
| 103 | Nickelâ€Rich and Lithiumâ€Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced Energy<br>Materials, 2016, 6, 1501010.                                                                                                                                   | 19.5 | 946       |
| 104 | High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a<br>compositionally graded Li[Ni <sub>0.85</sub> Co <sub>0.05</sub> Mn <sub>0.10</sub> ]O <sub>2</sub><br>cathode. Energy and Environmental Science, 2016, 9, 2152-2158.    | 30.8 | 269       |
| 105 | Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. Journal of Power Sources, 2016, 324, 106-112.                                                                                   | 7.8  | 58        |
| 106 | Synthesis of LiVOPO <sub>4</sub> by Emulsion Drying Method for Use as an Anode Material for<br>Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 25856-25862.                                                                            | 8.0  | 7         |
| 107 | Stability of type 310S stainless steel bipolar plates tested at various current densities in proton exchange membrane fuel cells. Electrochimica Acta, 2016, 211, 754-760.                                                                                          | 5.2  | 19        |
| 108 | Novel Cathode Materials for Naâ€Ion Batteries Composed of Spokeâ€Like Nanorods of<br>Na[Ni <sub>0.61</sub> Co <sub>0.12</sub> Mn <sub>0.27</sub> ]O <sub>2</sub> Assembled in Spherical<br>Secondary Particles. Advanced Functional Materials, 2016, 26, 8083-8093. | 14.9 | 78        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Vanadium dioxide – Reduced graphene oxide composite as cathode materials for rechargeable Li and Na<br>batteries. Journal of Power Sources, 2016, 326, 522-532.                                                                                                                                                                                             | 7.8  | 45        |
| 110 | Compositionally Graded Cathode Material with Longâ€Term Cycling Stability for Electric Vehicles<br>Application. Advanced Energy Materials, 2016, 6, 1601417.                                                                                                                                                                                                | 19.5 | 137       |
| 111 | Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries:<br>Li[Ni <sub>0.85</sub> Co <sub>0.11</sub> Al <sub>0.04</sub> ]O <sub>2</sub> and<br>Li[Ni <sub>0.84</sub> Co <sub>0.06</sub> Mn <sub>0.09</sub> Al <sub>0.01</sub> ]O <sub>2</sub> with<br>Two-Step Full Concentration Gradients, ACS Energy Letters, 2016, 1, 283-289. | 17.4 | 110       |
| 112 | Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Materials, 2016, 8, e270-e270.                                                                                                                                                                            | 7.9  | 53        |
| 113 | Re-heating effect of Ni-rich cathode material on structure and electrochemical properties. Journal of<br>Power Sources, 2016, 313, 1-8.                                                                                                                                                                                                                     | 7.8  | 65        |
| 114 | Surface coating effect on thermal properties of delithiated lithium nickel manganese layer oxide.<br>Journal of Power Sources, 2015, 282, 511-519.                                                                                                                                                                                                          | 7.8  | 12        |
| 115 | Carbothermal synthesis of molybdenum(IV) oxide as a high rate anode for rechargeable lithium batteries. Journal of Power Sources, 2015, 280, 1-4.                                                                                                                                                                                                           | 7.8  | 16        |
| 116 | Carbon-coated anatase titania as a high rate anode for lithium batteries. Journal of Power Sources, 2015, 281, 362-369.                                                                                                                                                                                                                                     | 7.8  | 23        |
| 117 | Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy, 2015, 12, 725-734.                                                                                                                                                                                                      | 16.0 | 109       |
| 118 | Nanostructured cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2015, 283, 219-236.                                                                                                                                                                                                                                          | 7.8  | 97        |
| 119 | Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy,<br>2015, 16, 218-226.                                                                                                                                                                                                                                     | 16.0 | 128       |
| 120 | A new synthetic method of titanium oxyfluoride and its application as an anode material for rechargeable lithium batteries. Journal of Power Sources, 2015, 288, 376-383.                                                                                                                                                                                   | 7.8  | 18        |
| 121 | Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nature Communications, 2015, 6, 6865.                                                                                                                                                                                                  | 12.8 | 210       |
| 122 | NaCrO <sub>2</sub> cathode for high-rate sodium-ion batteries. Energy and Environmental Science, 2015, 8, 2019-2026.                                                                                                                                                                                                                                        | 30.8 | 307       |
| 123 | Effect of titanium addition as nickel oxide formation inhibitor in nickel-rich cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 299, 425-433.                                                                                                                                                                                    | 7.8  | 54        |
| 124 | Effect of Lithium in Transition Metal Layers of Ni-Rich Cathode Materials on Electrochemical Properties. Journal of the Electrochemical Society, 2015, 162, A2313-A2318.                                                                                                                                                                                    | 2.9  | 16        |
| 125 | An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Research, 2015, 8, 1464-1479.                                                                                                                                                              | 10.4 | 304       |
| 126 | Thermal properties of fully delithiated olivines. Journal of Power Sources, 2014, 256, 479-484.                                                                                                                                                                                                                                                             | 7.8  | 11        |

| #   | Article                                                                                                                                                                                                                            | IF             | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 127 | Progress in High-Capacity Core–Shell Cathode Materials for Rechargeable Lithium Batteries. Journal of Physical Chemistry Letters, 2014, 5, 671-679.                                                                                | 4.6            | 57        |
| 128 | Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano<br>Letters, 2014, 14, 416-422.                                                                                                 | 9.1            | 422       |
| 129 | Effect of Residual Lithium Compounds on Layer Ni-Rich<br>Li[Ni <sub>0.7</sub> Mn <sub>0.3</sub> ]O <sub>2</sub> . Journal of the Electrochemical Society, 2014,<br>161, A920-A926.                                                 | 2.9            | 267       |
| 130 | Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer. Journal of the Electrochemical Society, 2014, 161, A142-A148.                                               | 2.9            | 31        |
| 131 | Optimization of Layered Cathode Material with Full Concentration Gradient for Lithium-Ion Batteries.<br>Journal of Physical Chemistry C, 2014, 118, 175-182.                                                                       | 3.1            | 37        |
| 132 | Nanorod and Nanoparticle Shells in Concentration Gradient Core–Shell Lithium Oxides for<br>Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 3295-3303.                                                                        | 6.8            | 18        |
| 133 | High Capacity O3-Type<br>Na[Li <sub>0.05</sub> (Ni <sub>0.25</sub> Fe <sub>0.25</sub> Mn <sub>0.5</sub> ) <sub>0.95</sub> ]O <sub>2&lt;<br/>Cathode for Sodium Ion Batteries. Chemistry of Materials, 2014, 26, 6165-6171.</sub>   | <i>ә</i> егр.> | 175       |
| 134 | High-Energy Layered Oxide Cathodes with Thin Shells for Improved Surface Stability. Chemistry of<br>Materials, 2014, 26, 5973-5979.                                                                                                | 6.7            | 41        |
| 135 | Electrochemical stability of aluminum current collector in alkyl carbonate electrolytes containing<br>lithium bis(pentafluoroethylsulfonyl)imide for lithium-ion batteries. Journal of Power Sources, 2014,<br>271, 167-173.       | 7.8            | 14        |
| 136 | Carbon-Coated Magnetite Embedded on Carbon Nanotubes for Rechargeable Lithium and Sodium<br>Batteries. ACS Applied Materials & Interfaces, 2014, 6, 11749-11757.                                                                   | 8.0            | 63        |
| 137 | Low Temperature Electrochemical Properties of Li[NixCoyMn1-x-y]O2Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1514-A1520.                                                      | 2.9            | 27        |
| 138 | Performance improvement of liquid phase plasma processed carbon blacks electrode in lithium ion battery applications. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1689-1693.                       | 2.2            | 3         |
| 139 | Advanced<br>Na[Ni <sub>0.25</sub> Fe <sub>0.5</sub> Mn <sub>0.25</sub> ]O <sub>2</sub> /C–Fe <sub>3</sub> O <sub>4&lt;<br/>Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage. Nano Letters, 2014, 14, 1620-1626.</sub> | lærp>          | 283       |
| 140 | Effect of Water on the Performance of Carbon Blacks Anode Material Processed by Plasma in the Benzene Solution. Science of Advanced Materials, 2014, 6, 1594-1598.                                                                 | 0.7            | 1         |
| 141 | Formation of a Continuous Solidâ€5olution Particle and its Application to Rechargeable Lithium<br>Batteries. Advanced Functional Materials, 2013, 23, 1028-1036.                                                                   | 14.9           | 39        |
| 142 | Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy and<br>Environmental Science, 2013, 6, 2609.                                                                                    | 30.8           | 221       |
| 143 | Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials &<br>Interfaces, 2013, 5, 11434-11440.                                                                                             | 8.0            | 236       |
| 144 | Electrochemical properties of the TiO2(B) powders ball mill treated for lithium-ion battery application. Chemistry Central Journal, 2013, 7, 174.                                                                                  | 2.6            | 9         |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | An advanced sodium-ion rechargeable battery based on a tin–carbon anode and a layered oxide<br>framework cathode. Physical Chemistry Chemical Physics, 2013, 15, 3827.                                                  | 2.8  | 88        |
| 146 | Iron trifluoride synthesized via evaporation method and its application to rechargeable lithium batteries. Journal of Power Sources, 2013, 223, 1-8.                                                                    | 7.8  | 48        |
| 147 | Preparation of Carbon Blacks by Liquid Phase Plasma (LPP) Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 7381-7385.                                                                                      | 0.9  | 13        |
| 148 | Effect of anatase phase on electrochemical properties of the TiO2(B) negative electrode for lithium-ion battery application. Current Applied Physics, 2013, 13, S148-S151.                                              | 2.4  | 9         |
| 149 | Microstructural Effect of Carbon Blacks for the Application in Lithium Ion Batteries. Japanese Journal of Applied Physics, 2013, 52, 11NM01.                                                                            | 1.5  | 7         |
| 150 | Surface Properties of Stainless Steel Cathodically Treated in Nitrate Solution and its Application to PEFC Bipolar Plates. Zairyo To Kankyo/ Corrosion Engineering, 2013, 62, 439-442.                                  | 0.2  | 3         |
| 151 | Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11, 942-947.                                                                                                       | 27.5 | 921       |
| 152 | Reversible NaFePO4 electrode for sodium secondary batteries. Electrochemistry Communications, 2012, 22, 149-152.                                                                                                        | 4.7  | 350       |
| 153 | Olivine LiCoPO4–carbon composite showing high rechargeable capacity. Journal of Materials<br>Chemistry, 2012, 22, 14932.                                                                                                | 6.7  | 53        |
| 154 | High voltage retainable Ni-saving high nitrogen stainless steel bipolar plates for proton exchange<br>membrane fuel cells: Phenomena and mechanism. Journal of Power Sources, 2012, 202, 92-99.                         | 7.8  | 14        |
| 155 | Direct observation of the passive layer on high nitrogen stainless steel used as bipolar plates for proton exchange membrane fuel cells. Journal of Power Sources, 2012, 210, 92-95.                                    | 7.8  | 12        |
| 156 | Double‣tructured LiMn <sub>0.85</sub> Fe <sub>0.15</sub> PO <sub>4</sub> Coordinated with<br>LiFePO <sub>4</sub> for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition,<br>2012, 51, 1853-1856. | 13.8 | 102       |
| 157 | Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9891.                                                                                | 6.7  | 320       |
| 158 | Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. Journal of Materials Chemistry, 2011, 21, 19368.                                                            | 6.7  | 75        |
| 159 | Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy and Environmental Science, 2011, 4, 1345.                                                                 | 30.8 | 433       |
| 160 | A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy<br>lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 10108.                                                     | 6.7  | 126       |
| 161 | Spherical core-shell Li[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4 spinels as high performance cathodes for lithium batteries. Energy and Environmental Science, 2011, 4, 935.                                              | 30.8 | 63        |
| 162 | A Separate Style of Stainless Steel Bipolar Plate for PEMFC and its Corrosion Behavior. Zairyo To<br>Kankyo/ Corrosion Engineering, 2011, 60, 432-434.                                                                  | 0.2  | 6         |

| #   | Article                                                                                                                                                                                                                                                             | IF     | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 163 | Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries,<br>Li <sub>2</sub> MnO <sub>3</sub> â^`LiCo <sub>1/3</sub> Ni <sub>1/3</sub> Mn <sub>1/3</sub> O <sub>2</sub><br>Journal of the American Chemical Society, 2011, 133, 4404-4419. | . 13.7 | 1,066     |
| 164 | Development of high power lithium-ion batteries: Layer Li[Ni0.4Co0.2Mn0.4]O2 and spinel<br>Li[Li0.1Al0.05Mn1.85]O4. Journal of Power Sources, 2011, 196, 7039-7043.                                                                                                 | 7.8    | 17        |
| 165 | Improvement of electrochemical properties of Li1.1Al0.05Mn1.85O4 achieved by an AlF3 coating. Journal of Power Sources, 2011, 196, 1353-1357.                                                                                                                       | 7.8    | 57        |
| 166 | Nanostructured TiO <sub>2</sub> and Its Application in Lithiumâ€Ion Storage. Advanced Functional<br>Materials, 2011, 21, 3231-3241.                                                                                                                                 | 14.9   | 154       |
| 167 | AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries.<br>Journal of Power Sources, 2011, 196, 6974-6977.                                                                                                                  | 7.8    | 100       |
| 168 | Effects of manganese and cobalt on the electrochemical and thermal properties of layered<br>Li[Ni0.52Co0.16+Mn0.32â^]O2 cathode materials. Journal of Power Sources, 2011, 196, 6710-6715.                                                                          | 7.8    | 25        |
| 169 | Enhanced electrochemical performance of carbon–LiMn1â^'Fe PO4 nanocomposite cathode for<br>lithium-ion batteries. Journal of Power Sources, 2011, 196, 6924-6928.                                                                                                   | 7.8    | 95        |
| 170 | Synthesis and electrochemical performances of core-shell structured<br>Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)0.2]O2 cathode material for lithium ion batteries. Journal of Power<br>Sources, 2010, 195, 6043-6048.                                                     | 7.8    | 48        |
| 171 | Applicability of extra low interstitials ferritic stainless steels for bipolar plates of proton exchange membrane fuel cells. Journal of Power Sources, 2010, 195, 7181-7186.                                                                                       | 7.8    | 12        |
| 172 | Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt.<br>Journal of Power Sources, 2010, 195, 8297-8301.                                                                                                                  | 7.8    | 27        |
| 173 | A Promising Alternative to PEMFC Graphite Bipolar Plates: Surface Modified Type 304 Stainless Steel with TiN Nanoparticles and Elastic Styrene Butadiene Rubber Particles. Fuel Cells, 2010, 10, 545-555.                                                           | 2.4    | 13        |
| 174 | A Novel Cathode Material with a Concentrationâ€Gradient for Highâ€Energy and Safe Lithiumâ€ion<br>Batteries. Advanced Functional Materials, 2010, 20, 485-491.                                                                                                      | 14.9   | 252       |
| 175 | Double Carbon Coating of LiFePO <sub>4</sub> as High Rate Electrode for Rechargeable Lithium<br>Batteries. Advanced Materials, 2010, 22, 4842-4845.                                                                                                                 | 21.0   | 361       |
| 176 | Nanostructured Anode Material for Highâ€Power Battery System in Electric Vehicles. Advanced<br>Materials, 2010, 22, 3052-3057.                                                                                                                                      | 21.0   | 359       |
| 177 | Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. Journal of Power Sources, 2010, 195, 2023-2028.                                                                                                   | 7.8    | 101       |
| 178 | Evaluation of polymer electrolyte membrane fuel cells by electrochemical impedance spectroscopy under different operation conditions and corrosion. Journal of Power Sources, 2010, 195, 5501-5507.                                                                 | 7.8    | 19        |
| 179 | Spinel lithium manganese oxide synthesized under a pressurized oxygen atmosphere. Electrochimica<br>Acta, 2010, 55, 8397-8401.                                                                                                                                      | 5.2    | 10        |
| 180 | Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochimica Acta, 2010, 55, 1193-1199.                                                                              | 5.2    | 55        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2010, 55, 8621-8627.                                                                           | 5.2  | 98        |
| 182 | Effect of Manganese Content on the Electrochemical and Thermal Stabilities of Li[Ni[sub 0.58]Co[sub 0.28â^'x]Mn[sub 0.14+x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A1335. | 2.9  | 23        |
| 183 | Effect of AlF <sub>3</sub> Coating on Thermal Behavior of Chemically Delithiated<br>Li <sub>0.35</sub> [Ni <sub>1/3</sub> Co <sub>1/3</sub> Mn <sub>1/3</sub> ]O <sub>2</sub> . Journal of<br>Physical Chemistry C, 2010, 114, 4710-4718.   | 3.1  | 99        |
| 184 | The effects of calcination temperature on the electrochemical performance of LiMnPO4 prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2010, 506, 372-376.                                                           | 5.5  | 49        |
| 185 | Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7074.                                                                                  | 6.7  | 214       |
| 186 | Nondestructive Evaluation of Concrete Environment against Corrosion of Reinforcing Bar Using the<br>Magnetic Corrosion Probe. Zairyo To Kankyo/ Corrosion Engineering, 2010, 59, 75-79.                                                     | 0.2  | 0         |
| 187 | Role of AlF[sub 3] Coating on LiCoO[sub 2] Particles during Cycling to Cutoff Voltage above 4.5 V.<br>Journal of the Electrochemical Society, 2009, 156, A1005.                                                                             | 2.9  | 70        |
| 188 | Effects of Co doping on Li[Ni0.5CoxMn1.5â°'x]O4 spinel materials for 5V lithium secondary batteries via<br>Co-precipitation. Journal of Power Sources, 2009, 189, 752-756.                                                                  | 7.8  | 54        |
| 189 | Effect of protecting metal oxide (Co3O4) layer on electrochemical properties of spinel Li1.1Mn1.9O4 as a cathode material for lithium battery applications. Journal of Power Sources, 2009, 189, 494-498.                                   | 7.8  | 32        |
| 190 | Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochimica Acta, 2009, 55, 288-297.                                                      | 5.2  | 104       |
| 191 | High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 2009, 8, 320-324.                                                                                                                                  | 27.5 | 1,323     |
| 192 | Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochimica Acta, 2009, 54, 3851-3856.                                              | 5.2  | 177       |
| 193 | Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing<br>LiPF6 salt. Electrochimica Acta, 2009, 54, 5804-5812.                                                                              | 5.2  | 31        |
| 194 | Application of Ni-free high nitrogen stainless steel for bipolar plates of proton exchange membrane<br>fuel cells. Electrochimica Acta, 2009, 54, 1127-1133.                                                                                | 5.2  | 33        |
| 195 | High Electrochemical Li Intercalation in Titanate Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14034-14039.                                                                                                                       | 3.1  | 15        |
| 196 | Improvement of High Voltage Cycling Performances of Li[Ni[sub 1/3]Co[sub 1/3]Mn[sub 1/3]]O[sub 2] at 55°C by a (NH[sub 4])[sub 3]AlF[sub 6] Coating. Electrochemical and Solid-State Letters, 2009, 12, A163.                               | 2.2  | 38        |
| 197 | Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. Journal of Materials Chemistry, 2009, 19, 1995.                                                                                                                  | 6.7  | 72        |
| 198 | Nanoporous Structured LiFePO[sub 4] with Spherical Microscale Particles Having High Volumetric<br>Capacity for Lithium Batteries. Electrochemical and Solid-State Letters, 2009, 12, A181.                                                  | 2.2  | 82        |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. Journal of Power Sources, 2008, 179, 347-350.                                                                                          | 7.8 | 112       |
| 200 | High nitrogen stainless steel as bipolar plates for proton exchange membrane fuel cells. Journal of<br>Power Sources, 2008, 185, 815-821.                                                                                                                | 7.8 | 28        |
| 201 | Optimization of microwave synthesis of Li[Ni0.4Co0.2Mn0.4]O2 as a positive electrode material for lithium batteries. Electrochimica Acta, 2008, 53, 3065-3074.                                                                                           | 5.2 | 35        |
| 202 | Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation. Electrochimica Acta, 2008, 53, 6033-6037.                                                                                                                                         | 5.2 | 66        |
| 203 | Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. Journal of Power Sources, 2008, 178, 826-831.                                                                    | 7.8 | 144       |
| 204 | Nanosized TiN–SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte<br>membrane fuel cells. Electrochimica Acta, 2008, 54, 574-581.                                                                                            | 5.2 | 24        |
| 205 | Nanoparticle TiN-coated type 310S stainless steel as bipolar plates for polymer electrolyte membrane<br>fuel cell. Electrochemistry Communications, 2008, 10, 480-484.                                                                                   | 4.7 | 67        |
| 206 | Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2008, 53, 4205-4212.                                                                    | 5.2 | 115       |
| 207 | The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density<br>C–LiFePO[sub 4] Prepared via Coprecipitation. Journal of the Electrochemical Society, 2008, 155, A414.                                                     | 2.9 | 35        |
| 208 | Improvement of the Electrochemical Properties of Li[Ni[sub 0.5]Mn[sub 0.5]]O[sub 2] by AlF[sub 3]<br>Coating. Journal of the Electrochemical Society, 2008, 155, A705.                                                                                   | 2.9 | 43        |
| 209 | Structural, Electrochemical, and Thermal Aspects of Li[(Ni[sub 0.5]Mn[sub 0.5])[sub 1â^'x]Co[sub<br>x]]O[sub 2]â€,(0≤â‰0.2) for High-Voltage Application of Lithium-Ion Secondary Batteries. Journal of the<br>Electrochemical Society, 2008, 155, A374. | 2.9 | 31        |
| 210 | Improvement of Electrochemical Performances of Li[Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1]]O[sub 2]<br>Cathode Materials by Fluorine Substitution. Journal of the Electrochemical Society, 2007, 154, A649.                                                     | 2.9 | 141       |
| 211 | Structural Transformation of Li[Ni[sub 0.5â^'x]Co[sub 2x]Mn[sub 0.5â^'x]]O[sub 2] (2xâ‰ <b>0</b> .1) Charged in<br>High-Voltage Range (4.5â€,V). Journal of the Electrochemical Society, 2007, 154, A520.                                                | 2.9 | 19        |
| 212 | Microwave Synthesis of Spherical Li[Ni0.4Co0.2Mn0.4]O2Powders as a Positive Electrode Material for Lithium Batteries. Chemistry of Materials, 2007, 19, 2727-2729.                                                                                       | 6.7 | 35        |
| 213 | Physical and Electrochemical Properties of Li[Ni[sub 0.4]Co[sub x]Mn[sub 0.6â <sup>~*</sup> x]]O[sub 2] (x=0.1–0.4)<br>Electrode Materials Synthesized via Coprecipitation. Journal of the Electrochemical Society, 2007, 154,<br>A937.                  | 2.9 | 34        |
| 214 | Structural and Electrochemical Properties of Layered Li[Ni[sub 1â^'2x]Co[sub x]Mn[sub x]]O[sub 2]<br>(x=0.1–0.3) Positive Electrode Materials for Li-Ion Batteries. Journal of the Electrochemical Society,<br>2007, 154, A971.                          | 2.9 | 177       |
| 215 | Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2as Positive Electrode Materials for Lithium-Ion Secondary Batteries. Journal of Physical Chemistry C, 2007, 111, 4061-4067.                                                               | 3.1 | 163       |
| 216 | Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochimica Acta, 2007, 53, 1013-1019.                                                                                                                                   | 5.2 | 109       |

| #   | Article                                                                                                                                                                                                                 | IF              | CITATIONS         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 217 | Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode. Electrochimica Acta, 2007, 52, 5201-5206.                                   | 5.2             | 50                |
| 218 | Synthesis and electrochemical properties of spherical spinel Li1.05M0.05Mn1.9O4 (M=Mg and Al) as a cathode material for lithium-ion batteries by co-precipitation method. Journal of Power Sources, 2007, 174, 726-729. | 7.8             | 18                |
| 219 | Synthesis of Spherical Nano- to Microscale Coreâ^'Shell Particles<br>Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2and Their Applications to Lithium Batteries. Chemistry of<br>Materials, 2006, 18, 5159-5163.                | 6.7             | 116               |
| 220 | Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2by Emulsion Drying Method and Impact of Excess Li on Structural and Electrochemical Properties. Chemistry of Materials, 2006, 18, 1658-1666.                                       | 6.7             | 82                |
| 221 | Novel Coreâ^'Shell-Structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2via Coprecipitation as Positive<br>Electrode Material for Lithium Secondary Batteries. Journal of Physical Chemistry B, 2006, 110,<br>6810-6815.      | 2.6             | 97                |
| 222 | Ultrasonic spray pyrolysis of nano crystalline spinel LiMn2O4 showing good cycling performance in the 3V range. Electrochimica Acta, 2006, 51, 4089-4095.                                                               | 5.2             | 27                |
| 223 | Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode.<br>Electrochemistry Communications, 2006, 8, 821-826.                                                                              | 4.7             | 245               |
| 224 | Synthesis of spherical Li[Ni(1/3â^'z)Co(1/3â^'z)Mn(1/3â^'z)Mgz]O2 as positive electrode material for<br>lithium-ion battery. Electrochimica Acta, 2006, 51, 2447-2453.                                                  | 5.2             | 92                |
| 225 | Improvement of cycling performance of Li1.1Mn1.9O4 at 60°C by NiO addition for Li-ion secondary batteries. Electrochimica Acta, 2006, 51, 5912-5919.                                                                    | 5.2             | 33                |
| 226 | Hydrothermal phase formation of orthorhombic LiMnO2 and its derivatives as lithium intercalation compounds. Solid State Ionics, 2006, 177, 733-739.                                                                     | 2.7             | 17                |
| 227 | Improved Electrochemical Cycling Behavior of ZnO-Coated Li[sub 1.05]Al[sub 0.1]Mn[sub 1.85]O[sub 3.95]F[sub 0.05] Spinel at 55°C. Journal of the Electrochemical Society, 2006, 153, A1290.                             | 2.9             | 42                |
| 228 | Microscale Core-Shell Structured Li[(Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1])[sub 0.8](Ni[sub 0.5]Mn[sub) Tj ETQqC<br>Solid-State Letters, 2006, 9, A171.                                                                     | 0 0 rgBT<br>2.2 | Overlock 10<br>31 |
| 229 | Electrochemical evaluation of mixed oxide electrode for Li-ion secondary batteries: Li1.1Mn1.9O4 and LiNi0.8Co0.15Al0.05O2. Journal of Power Sources, 2005, 146, 222-225.                                               | 7.8             | 62                |
| 230 | Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2â^'zFz as lithium intercalation material. Journal of Power<br>Sources, 2005, 146, 602-605.                                                                                   | 7.8             | 62                |
| 231 | Improvement of structural integrity and battery performance of LiNi0.5Mn0.5O2 by Al and Ti doping.<br>Journal of Power Sources, 2005, 146, 645-649.                                                                     | 7.8             | 55                |
| 232 | Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta, 2005, 50, 4800-4806.                                                         | 5.2             | 90                |
| 233 | Effects of synthesis condition on LiNiMnO cathode material for prepared by ultrasonic spray pyrolysis method. Solid State Ionics, 2005, 176, 481-486.                                                                   | 2.7             | 54                |
| 234 | Synthesis and electrochemical properties of layered LiNi1/2Mn1/2O2prepared by coprecipitation.<br>Journal of Applied Electrochemistry, 2005, 35, 151-156.                                                               | 2.9             | 16                |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Showing Reversible Phase Transition on 3 V Region. Electrochemical and Solid-State Letters, 2005, 8, A163.                                                                                                             | 2.2  | 41        |
| 236 | Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub<br>1â°•3]]O[sub 2] Cathodes by Fluorine Substitution for Li-Ion Batteries. Journal of the Electrochemical<br>Society, 2005, 152, A1707.            | 2.9  | 133       |
| 237 | Synthesis of LiNi0.5Mn0.5-xTixO2 by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties. Chemistry of Materials, 2005, 17, 2427-2435.                                                                                | 6.7  | 85        |
| 238 | Role of Alumina Coating on Liâ^'Niâ^'Coâ^'Mnâ^'O Particles as Positive Electrode Material for Lithium-Ion<br>Batteries. Chemistry of Materials, 2005, 17, 3695-3704.                                                                                    | 6.7  | 493       |
| 239 | Synthesis of Nanostructured Li[Ni1/3Co1/3Mn1/3]O2via a Modified Carbonate Process. Chemistry of Materials, 2005, 17, 6-8.                                                                                                                               | 6.7  | 96        |
| 240 | Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2with the Microscale<br>Coreâ^'Shell Structure as the Positive Electrode Material for Lithium Batteries. Journal of the<br>American Chemical Society, 2005, 127, 13411-13418. | 13.7 | 417       |
| 241 | Phase Transitions in Li[sub 1â^î]Ni[sub 0.5]Mn[sub 1.5]O[sub 4] during Cycling at 5 V. Electrochemical and Solid-State Letters, 2004, 7, A216.                                                                                                          | 2.2  | 109       |
| 242 | Effect of Ti Substitution for Mn on the Structure of LiNi[sub 0.5]Mn[sub 1.5â^'x]Ti[sub x]O[sub 4] and<br>Their Electrochemical Properties as Lithium Insertion Material. Journal of the Electrochemical<br>Society, 2004, 151, A1911.                  | 2.9  | 112       |
| 243 | Mo[sup 6+]-Doped Li[Ni[sub (0.5+x)]Mn[sub (1.5â^'2x)]Mo[sub x]]O[sub 4] Spinel Materials for 5 V Lithium<br>Secondary Batteries Prepared by Ultrasonic Spray Pyrolysis. Electrochemical and Solid-State Letters,<br>2004, 7, A451.                      | 2.2  | 28        |
| 244 | Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochimica Acta, 2004, 49, 219-227.                                                                                                      | 5.2  | 231       |
| 245 | Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 2004, 50, 939-948.                                                                                                                                           | 5.2  | 535       |
| 246 | Effect of excess lithium on LiNi0.5Mn0.5O2+δ and its electrochemistry as lithium insertion material.<br>Solid State Ionics, 2004, 170, 139-144.                                                                                                         | 2.7  | 33        |
| 247 | Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochimica Acta, 2004, 49, 4213-4222.                                                                                | 5.2  | 189       |
| 248 | Synthesis and Electrochemical Properties of Li[Ni[sub 1/3]Co[sub 1/3]Mn[sub (1/3â^'x)]Mg[sub x]]O[sub 2â^'y]F[sub y] via Coprecipitation. Electrochemical and Solid-State Letters, 2004, 7, A477.                                                       | 2.2  | 93        |
| 249 | Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic<br>Structures:  Fd3Ì,,m and P4332. Chemistry of Materials, 2004, 16, 906-914.                                                                             | 6.7  | 687       |
| 250 | Hydrothermal Synthesis of Layered Li[Ni0.5Mn0.5]O2as Lithium Intercalation Material. Chemistry<br>Letters, 2004, 33, 818-819.                                                                                                                           | 1.3  | 10        |
| 251 | Synthesis of Li[Ni1/3Co1/3Mn1/3]O2â^'zFzvia Coprecipitation. Chemistry Letters, 2004, 33, 1388-1389.                                                                                                                                                    | 1.3  | 21        |
| 252 | Effects of Molybdenum Doping on the Layered Li[Ni0.5+xMn0.5â^'2xMox]O2Cathode Materials for<br>Lithium Secondary Batteries. Chemistry Letters, 2004, 33, 2-3.                                                                                           | 1.3  | 18        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Structural Investigation of Layered Li[sub 1â^îĵ]Mn[sub x]Cr[sub 1â^x]O[sub 2] by XANES and In Situ XRD<br>Measurements. Journal of the Electrochemical Society, 2003, 150, A1560.       | 2.9 | 33        |
| 254 | Emulsion Drying Preparation of LiFePO4/C Composite and Its Enhanced High-rate Performance at 50 ŰC.<br>Chemistry Letters, 2003, 32, 566-567.                                             | 1.3 | 22        |
| 255 | Preparation of LiFePO <sub>4</sub> as Lithium Intercalation Compound by Emulsion Drying Method.<br>Electrochemistry, 2003, 71, 177-179.                                                  | 1.4 | 4         |
| 256 | Hydrothermal Synthesis of Orthorhombic LiCo[sub x]Mn[sub 1â^'x]O[sub 2] and Their Structural<br>Changes during Cycling. Journal of the Electrochemical Society, 2002, 149, A1349.        | 2.9 | 40        |
| 257 | Preparation of layered LiMnxCr1â^'xO2 solid solution by emulsion drying method as lithium intercalation compounds. Electrochemistry Communications, 2002, 4, 397-401.                    | 4.7 | 24        |
| 258 | Synthetic optimization of orthorhombic LiMnO2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery. Solid State Ionics, 2002, 150, 199-205.             | 2.7 | 31        |
| 259 | Neutron powder diffraction studies of LiMn2â^'yAlyO4 synthesized by the emulsion drying method.<br>Solid State Ionics, 2002, 149, 47-52.                                                 | 2.7 | 52        |
| 260 | Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries. Solid State Ionics, 2002, 152-153, 311-318.                                   | 2.7 | 43        |
| 261 | Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochimica Acta, 2002, 47, 2543-2549.                                                                         | 5.2 | 163       |
| 262 | Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2. Electrochimica Acta, 2002, 47, 3287-3295.                                                                    | 5.2 | 76        |
| 263 | Cobalt Doped Orthorhombic LiMnO2as Cathode Materials for Lithium-Ion Batteries. Chemistry Letters, 2001, 30, 1114-1115.                                                                  | 1.3 | 4         |
| 264 | Orthorhombic LiMnO2as a High Capacity Cathode for Lithium-Ion Battery Synthesized by Hydrothermal<br>Route at 170 °C. Chemistry Letters, 2001, 30, 80-81.                                | 1.3 | 19        |
| 265 | Synthesis of Orthorhombic LiMnO2as a High Capacity Cathode for Li-Ion Battery by Emulsion Drying<br>Method. Chemistry Letters, 2001, 30, 574-575.                                        | 1.3 | 9         |
| 266 | Lattice parameter as a measure of electrochemical properties of LiMn2O4. Journal of Power Sources, 2001, 97-98, 454-457.                                                                 | 7.8 | 26        |
| 267 | Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics, 2001, 139, 47-56.                                                                            | 2.7 | 221       |
| 268 | Enhanced Structural Stability and Cyclability of Al-Doped LiMn[sub 2]O[sub 4] Spinel Synthesized by the Emulsion Drying Method. Journal of the Electrochemical Society, 2001, 148, A482. | 2.9 | 183       |
| 269 | Capacity fading of LiMn2O4 electrode synthesized by the emulsion drying method. Journal of Power<br>Sources, 2000, 90, 103-108.                                                          | 7.8 | 55        |
| 270 | Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method. Journal of Applied Electrochemistry, 2000, 30, 1081-1085.                                      | 2.9 | 44        |

| #   | Article                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Preparation and characterization of LiMn2O4 powders by the emulsion drying method. Journal of Power Sources, 1999, 84, 32-38. | 7.8 | 44        |