Seung-Taek Myung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/903757/publications.pdf

Version: 2024-02-01

271 papers

30,271 citations

83 h-index 167

g-index

284 all docs

284 docs citations

times ranked

284

16444 citing authors

#	Article	IF	CITATIONS
1	Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46, 3529-3614.	38.1	3,436
2	High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 2009, 8, 320-324.	27.5	1,323
3	Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li ₂ MnO ₃ 6^*LiCo _{1/3} Ni _{1/3} Mn _{1/3} O ₂ Journal of the American Chemical Society, 2011, 133, 4404-4419.	. 13.7	1,066
4	Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters, 2017, 2, 196-223.	17.4	1,033
5	Nickelâ€Rich and Lithiumâ€Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced Energy Materials, 2016, 6, 1501010.	19.5	946
6	Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11, 942-947.	27.5	921
7	Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:  Fd3Ì,,m and P4332. Chemistry of Materials, 2004, 16, 906-914.	6.7	687
8	Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2620-2640.	17.4	676
9	Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 2004, 50, 939-948.	5.2	535
10	Recent Progress in Rechargeable Potassium Batteries. Advanced Functional Materials, 2018, 28, 1802938.	14.9	518
11	Role of Alumina Coating on Liâ-'Niâ-'Coâ-'Mnâ-'O Particles as Positive Electrode Material for Lithium-Ion Batteries. Chemistry of Materials, 2005, 17, 3695-3704.	6.7	493
12	Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy and Environmental Science, 2011, 4, 1345.	30.8	433
13	Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Letters, 2014, 14, 416-422.	9.1	422
14	Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2with the Microscale Coreâ^Shell Structure as the Positive Electrode Material for Lithium Batteries. Journal of the American Chemical Society, 2005, 127, 13411-13418.	13.7	417
15	Double Carbon Coating of LiFePO ₄ as High Rate Electrode for Rechargeable Lithium Batteries. Advanced Materials, 2010, 22, 4842-4845.	21.0	361
16	Nanostructured Anode Material for Highâ€Power Battery System in Electric Vehicles. Advanced Materials, 2010, 22, 3052-3057.	21.0	359
17	Reversible NaFePO4 electrode for sodium secondary batteries. Electrochemistry Communications, 2012, 22, 149-152.	4.7	350
18	Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9891.	6.7	320

#	Article	IF	Citations
19	NaCrO ₂ cathode for high-rate sodium-ion batteries. Energy and Environmental Science, 2015, 8, 2019-2026.	30.8	307
20	An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Research, 2015, 8, 1464-1479.	10.4	304
21	Structural Stability of LiNiO ₂ Cycled above 4.2 V. ACS Energy Letters, 2017, 2, 1150-1155.	17.4	292
22	Advanced Na[Ni _{0.25} Fe _{0.5} Mn _{0.25}]O ₂ /C–Fe ₃ O _{4< Sodium-lon Batteries Using EMS Electrolyte for Energy Storage. Nano Letters, 2014, 14, 1620-1626.}	:/s@ub:>	283
23	High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni _{0.85} Co _{0.05} Mn _{0.10}]O ₂ cathode. Energy and Environmental Science, 2016, 9, 2152-2158.	30.8	269
24	Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni _{0.7} Mn _{0.3}]O ₂ . Journal of the Electrochemical Society, 2014, 161, A920-A926.	2.9	267
25	A Novel Cathode Material with a Concentrationâ€Gradient for Highâ€Energy and Safe Lithiumâ€lon Batteries. Advanced Functional Materials, 2010, 20, 485-491.	14.9	252
26	Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Materials, 2021, 35, 550-576.	18.0	248
27	Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochemistry Communications, 2006, 8, 821-826.	4.7	245
28	Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11434-11440.	8.0	236
29	Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochimica Acta, 2004, 49, 219-227.	5.2	231
30	Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics, 2001, 139, 47-56.	2.7	221
31	Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy and Environmental Science, 2013, 6, 2609.	30.8	221
32	Recent Progress and Perspective of Advanced Highâ€Energy Coâ€Less Niâ€Rich Cathodes for Liâ€Ion Batteries: Yesterday, Today, and Tomorrow. Advanced Energy Materials, 2020, 10, 2002027.	19.5	221
33	Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7074.	6.7	214
34	Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nature Communications, 2015, 6, 6865.	12.8	210
35	Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochimica Acta, 2004, 49, 4213-4222.	5.2	189
36	Enhanced Structural Stability and Cyclability of Al-Doped LiMn[sub 2]O[sub 4] Spinel Synthesized by the Emulsion Drying Method. Journal of the Electrochemical Society, 2001, 148, A482.	2.9	183

#	Article	IF	CITATIONS
37	Structural and Electrochemical Properties of Layered Li[Ni[sub 1â^2x]Co[sub x]Mn[sub x]]O[sub 2] (x=0.1â€"0.3) Positive Electrode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A971.	2.9	177
38	Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochimica Acta, 2009, 54, 3851-3856.	5.2	177
39	High Capacity O3-Type Na[Li _{0.05} (Ni _{0.25} Fe _{0.25} Mn _{0.5}) _{0.95}]O _{2< Cathode for Sodium Ion Batteries. Chemistry of Materials, 2014, 26, 6165-6171.}	\ærp>	175
40	Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy and Environmental Science, 2021, 14, 844-852.	30.8	174
41	Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochimica Acta, 2002, 47, 2543-2549.	5.2	163
42	Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2as Positive Electrode Materials for Lithium-Ion Secondary Batteries. Journal of Physical Chemistry C, 2007, 111, 4061-4067.	3.1	163
43	Extending the Battery Life Using an Al-Doped Li[Ni _{0.76} Co _{0.09} Mn _{0.15}]O ₂ Cathode with Concentration Gradients for Lithium Ion Batteries. ACS Energy Letters, 2017, 2, 1848-1854.	17.4	162
44	Development of P3-K _{0.69} CrO ₂ as an ultra-high-performance cathode material for K-ion batteries. Energy and Environmental Science, 2018, 11, 2821-2827.	30.8	157
45	Nanostructured TiO ₂ and Its Application in Lithiumâ€lon Storage. Advanced Functional Materials, 2011, 21, 3231-3241.	14.9	154
46	Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. Journal of Power Sources, 2008, 178, 826-831.	7.8	144
47	Improvement of Electrochemical Performances of Li[Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1]]O[sub 2] Cathode Materials by Fluorine Substitution. Journal of the Electrochemical Society, 2007, 154, A649.	2.9	141
48	Sodiumâ€lon Batteries: Building Effective Layered Cathode Materials with Longâ€Term Cycling by Modifying the Surface via Sodium Phosphate. Advanced Functional Materials, 2018, 28, 1705968.	14.9	138
49	Compositionally Graded Cathode Material with Longâ€Term Cycling Stability for Electric Vehicles Application. Advanced Energy Materials, 2016, 6, 1601417.	19.5	137
50	Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]]O[sub 2] Cathodes by Fluorine Substitution for Li-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A1707.	2.9	133
51	Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy, 2015, 16, 218-226.	16.0	128
52	A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 10108.	6.7	126
53	Hollandite-type Al-doped VO \langle sub \rangle 1.52 \langle /sub \rangle (OH) \langle sub \rangle 0.77 \langle /sub \rangle as a zinc ion insertion host material. Journal of Materials Chemistry A, 2017, 5, 8367-8375.	10.3	123
54	K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy, 2019, 61, 284-294.	16.0	120

#	Article	lF	CITATIONS
55	Co-Free Layered Cathode Materials for High Energy Density Lithium-Ion Batteries. ACS Energy Letters, 2020, 5, 1814-1824.	17.4	117
56	Synthesis of Spherical Nano- to Microscale Coreâ´'Shell Particles $Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2$ and Their Applications to Lithium Batteries. Chemistry of Materials, 2006, 18, 5159-5163.	6.7	116
57	Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2008, 53, 4205-4212.	5.2	115
58	Effect of Ti Substitution for Mn on the Structure of LiNi[sub 0.5]Mn[sub 1.5â^'x]Ti[sub x]O[sub 4] and Their Electrochemical Properties as Lithium Insertion Material. Journal of the Electrochemical Society, 2004, 151, A1911.	2.9	112
59	Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. Journal of Power Sources, 2008, 179, 347-350.	7.8	112
60	Open-Structured Vanadium Dioxide as an Intercalation Host for Zn lons: Investigation by First-Principles Calculation and Experiments. Chemistry of Materials, 2018, 30, 6777-6787.	6.7	111
61	Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries: Li[Ni _{0.85} Co _{0.11} Al _{0.04}]O ₂ and Li[Ni _{0.84} Co _{0.06} with Two-Step Full Concentration Gradients. ACS Energy Letters. 2016. 1. 283-289.	17.4	110
62	Phase Transitions in Li[sub 1â^î]Ni[sub 0.5]Mn[sub 1.5]O[sub 4] during Cycling at 5 V. Electrochemical and Solid-State Letters, 2004, 7, A216.	2.2	109
63	Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochimica Acta, 2007, 53, 1013-1019.	5.2	109
64	Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy, 2015, 12, 725-734.	16.0	109
65	Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23671-23680.	10.3	107
66	Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochimica Acta, 2009, 55, 288-297.	5.2	104
67	Doubleâ€Structured LiMn _{0.85} Fe _{0.15} PO ₄ Coordinated with LiFePO ₄ for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2012, 51, 1853-1856.	13.8	102
68	Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. Journal of Power Sources, 2010, 195, 2023-2028.	7.8	101
69	AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. Journal of Power Sources, 2011, 196, 6974-6977.	7.8	100
70	Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy, 2019, 59, 197-206.	16.0	100
71	Effect of AlF ₃ Coating on Thermal Behavior of Chemically Delithiated Li _{0.35} [Ni _{1/3} Co _{1/3} Mn _{1/3}]O ₂ . Journal of Physical Chemistry C, 2010, 114, 4710-4718.	3.1	99
72	High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2010, 55, 8621-8627.	5.2	98

#	Article	IF	CITATIONS
73	Novel Coreâ^'Shell-Structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries. Journal of Physical Chemistry B, 2006, 110, 6810-6815.	2.6	97
74	Nanostructured cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2015, 283, 219-236.	7.8	97
75	Synthesis of Nanostructured Li[Ni1/3Co1/3Mn1/3]O2via a Modified Carbonate Process. Chemistry of Materials, 2005, 17, 6-8.	6.7	96
76	Enhanced electrochemical performance of carbon–LiMn1⒒Fe PO4 nanocomposite cathode for lithium-ion batteries. Journal of Power Sources, 2011, 196, 6924-6928.	7.8	95
77	Cathode Materials for Future Electric Vehicles and Energy Storage Systems. ACS Energy Letters, 2017, 2, 703-708.	17.4	95
78	Synthesis and Electrochemical Properties of Li[Ni[sub $1/3$]Co[sub $1/3$]Mn[sub $(1/3\hat{a}^2x)$]Mg[sub x]]O[sub $2\hat{a}^2y$]F[sub y] via Coprecipitation. Electrochemical and Solid-State Letters, 2004, 7, A477.	2.2	93
79	Synthesis of spherical Li[Ni(1/3â^²z)Co(1/3â^²z)Mn(1/3â^²z)Mgz]O2 as positive electrode material for lithium-ion battery. Electrochimica Acta, 2006, 51, 2447-2453.	5.2	92
80	A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Materials Today Energy, 2018, 9, 49-66.	4.7	92
81	Bioinspired Surface Layer for the Cathode Material of Highâ€Energyâ€Density Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702942.	19.5	91
82	Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta, 2005, 50, 4800-4806.	5.2	90
83	An advanced sodium-ion rechargeable battery based on a tin–carbon anode and a layered oxide framework cathode. Physical Chemistry Chemical Physics, 2013, 15, 3827.	2.8	88
84	Synthesis of LiNi0.5Mn0.5-xTixO2 by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties. Chemistry of Materials, 2005, 17, 2427-2435.	6.7	85
85	Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2by Emulsion Drying Method and Impact of Excess Li on Structural and Electrochemical Properties. Chemistry of Materials, 2006, 18, 1658-1666.	6.7	82
86	Nanoporous Structured LiFePO[sub 4] with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries. Electrochemical and Solid-State Letters, 2009, 12, A181.	2.2	82
87	Novel Cathode Materials for Naâ€lon Batteries Composed of Spokeâ€Like Nanorods of Na[Ni _{0.61} Co _{0.12} Mn _{0.27}]O ₂ Assembled in Spherical Secondary Particles. Advanced Functional Materials, 2016, 26, 8083-8093.	14.9	78
88	Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2. Electrochimica Acta, 2002, 47, 3287-3295.	5.2	76
89	A New Strategy to Build a Highâ€Performance P′2â€₹ype Cathode Material through Titanium Doping for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1901912.	14.9	76
90	Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. Journal of Materials Chemistry, 2011, 21, 19368.	6.7	75

#	Article	IF	Citations
91	Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. Journal of Materials Chemistry, 2009, 19, 1995.	6.7	72
92	Highâ€Voltage Oxygenâ€Redoxâ€Based Cathode for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001111.	19.5	72
93	Role of AlF[sub 3] Coating on LiCoO[sub 2] Particles during Cycling to Cutoff Voltage above 4.5 V. Journal of the Electrochemical Society, 2009, 156, A1005.	2.9	70
94	Nanoparticle TiN-coated type 310S stainless steel as bipolar plates for polymer electrolyte membrane fuel cell. Electrochemistry Communications, 2008, 10, 480-484.	4.7	67
95	Efficient recycling of valuable resources from discarded lithium-ion batteries. Journal of Power Sources, 2019, 426, 259-265.	7.8	67
96	Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation. Electrochimica Acta, 2008, 53, 6033-6037.	5.2	66
97	Re-heating effect of Ni-rich cathode material on structure and electrochemical properties. Journal of Power Sources, 2016, 313, 1-8.	7.8	65
98	Spherical core-shell Li[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4 spinels as high performance cathodes for lithium batteries. Energy and Environmental Science, 2011, 4, 935.	30.8	63
99	Carbon-Coated Magnetite Embedded on Carbon Nanotubes for Rechargeable Lithium and Sodium Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11749-11757.	8.0	63
100	Electrochemical evaluation of mixed oxide electrode for Li-ion secondary batteries: Li1.1Mn1.9O4 and LiNi0.8Co0.15Al0.05O2. Journal of Power Sources, 2005, 146, 222-225.	7.8	62
101	Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2â^'zFz as lithium intercalation material. Journal of Power Sources, 2005, 146, 602-605.	7.8	62
102	Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. Journal of Power Sources, 2016, 324, 106-112.	7.8	58
103	Role of the Mn substituent in Na ₃ V ₂ (PO ₄) ₃ for high-rate sodium storage. Journal of Materials Chemistry A, 2018, 6, 16627-16637.	10.3	58
104	Improvement of electrochemical properties of Li1.1Al0.05Mn1.85O4 achieved by an AlF3 coating. Journal of Power Sources, 2011, 196, 1353-1357.	7.8	57
105	Progress in High-Capacity Core–Shell Cathode Materials for Rechargeable Lithium Batteries. Journal of Physical Chemistry Letters, 2014, 5, 671-679.	4.6	57
106	Facile migration of potassium ions in a ternary P3-type K0.5[Mn0.8Fe0.1Ni0.1]O2 cathode in rechargeable potassium batteries. Energy Storage Materials, 2020, 25, 714-723.	18.0	57
107	Capacity fading of LiMn2O4 electrode synthesized by the emulsion drying method. Journal of Power Sources, 2000, 90, 103-108.	7.8	55
108	Improvement of structural integrity and battery performance of LiNi0.5Mn0.5O2 by Al and Ti doping. Journal of Power Sources, 2005, 146, 645-649.	7.8	55

#	Article	IF	CITATIONS
109	Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochimica Acta, 2010, 55, 1193-1199.	5.2	55
110	Effects of synthesis condition on LiNiMnO cathode material for prepared by ultrasonic spray pyrolysis method. Solid State Ionics, 2005, 176, 481-486.	2.7	54
111	Effects of Co doping on Li[Ni0.5CoxMn1.5â^'x]O4 spinel materials for 5V lithium secondary batteries via Co-precipitation. Journal of Power Sources, 2009, 189, 752-756.	7.8	54
112	Effect of titanium addition as nickel oxide formation inhibitor in nickel-rich cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 299, 425-433.	7.8	54
113	New Insight on Openâ€Structured Sodium Vanadium Oxide as Highâ€Capacity and Long Life Cathode for Zn–Ion Storage: Structure, Electrochemistry, and Firstâ€Principles Calculation. Advanced Energy Materials, 2020, 10, 2001595.	19.5	54
114	Olivine LiCoPO4–carbon composite showing high rechargeable capacity. Journal of Materials Chemistry, 2012, 22, 14932.	6.7	53
115	Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Materials, 2016, 8, e270-e270.	7.9	53
116	Potassium vanadate as a new cathode material for potassium-ion batteries. Journal of Power Sources, 2019, 432, 24-29.	7.8	53
117	Neutron powder diffraction studies of LiMn2â^'yAlyO4 synthesized by the emulsion drying method. Solid State Ionics, 2002, 149, 47-52.	2.7	52
118	Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation. Journal of Materials Chemistry A, 2018, 6, 8558-8567.	10.3	52
119	Highly enhancement of the SiO nanocomposite through Ti-doping and carbon-coating for high-performance Li-ion battery. Journal of Power Sources, 2018, 400, 613-620.	7.8	51
120	Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode. Electrochimica Acta, 2007, 52, 5201-5206.	5.2	50
121	Mnâ€Rich Pâ€22â€Na _{0.67} [Ni _{0.1} Fe _{0.1} Mn _{0.8}]O _{2Highâ€Energyâ€Density and Longâ€Life Cathode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001346.}	> as 19.5	50
122	P2â€K _{0.75} [Ni _{1/3} Mn _{2/3}]O ₂ Cathode Material for High Power and Long Life Potassiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 1903605.	19.5	50
123	The effects of calcination temperature on the electrochemical performance of LiMnPO4 prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2010, 506, 372-376.	5.5	49
124	Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn–Teller Distortion of P′2-Type Na _{2/3} MnO ₂ : Experimental and Theoretical Studies. ACS Applied Materials & Los Applied Materials &	8.0	49
125	Controlled Oxygen Redox for Excellent Power Capability in Layered Sodiumâ€Based Compounds. Advanced Energy Materials, 2019, 9, 1901181.	19.5	49
126	Synthesis and electrochemical performances of core-shell structured Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)0.2]O2 cathode material for lithium ion batteries. Journal of Power Sources, 2010, 195, 6043-6048.	7.8	48

#	Article	IF	Citations
127	Iron trifluoride synthesized via evaporation method and its application to rechargeable lithium batteries. Journal of Power Sources, 2013, 223, 1-8.	7.8	48
128	Graphene Decorated by Indium Sulfide Nanoparticles as High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23723-23730.	8.0	48
129	Vanadium dioxide – Reduced graphene oxide composite as cathode materials for rechargeable Li and Na batteries. Journal of Power Sources, 2016, 326, 522-532.	7.8	45
130	Preparation and characterization of LiMn2O4 powders by the emulsion drying method. Journal of Power Sources, 1999, 84, 32-38.	7.8	44
131	Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method. Journal of Applied Electrochemistry, 2000, 30, 1081-1085.	2.9	44
132	Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries. Solid State Ionics, 2002, 152-153, 311-318.	2.7	43
133	Improvement of the Electrochemical Properties of Li[Ni[sub 0.5]Mn[sub 0.5]]O[sub 2] by AlF[sub 3] Coating. Journal of the Electrochemical Society, 2008, 155, A705.	2.9	43
134	A new pre-sodiation additive for sodium-ion batteries. Energy Storage Materials, 2020, 32, 281-289.	18.0	43
135	Improved Electrochemical Cycling Behavior of ZnO-Coated Li[sub 1.05]Al[sub 0.1]Mn[sub 1.85]O[sub 3.95]F[sub 0.05] Spinel at 55°C. Journal of the Electrochemical Society, 2006, 153, A1290.	2.9	42
136	Hysteresisâ€Suppressed Reversible Oxygenâ€Redox Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	42
137	LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Showing Reversible Phase Transition on 3 V Region. Electrochemical and Solid-State Letters, 2005, 8, A163.	2.2	41
138	High-Energy Layered Oxide Cathodes with Thin Shells for Improved Surface Stability. Chemistry of Materials, 2014, 26, 5973-5979.	6.7	41
139	Tunnel-type \hat{l}^2 -FeOOH cathode material for high rate sodium storage via a new conversion reaction. Nano Energy, 2017, 41, 687-696.	16.0	41
140	P2-Na _{2/3} MnO ₂ by Co Incorporation: As a Cathode Material of High Capacity and Long Cycle Life for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28928-28933.	8.0	41
141	Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 3903-3909.	10.3	41
142	Hydrothermal Synthesis of Orthorhombic LiCo[sub x]Mn[sub 1â^'x]O[sub 2] and Their Structural Changes during Cycling. Journal of the Electrochemical Society, 2002, 149, A1349.	2.9	40
143	Recent Advances in Electrode Materials with Anion Redox Chemistry for Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	11.0	40
144	Formation of a Continuous Solidâ€Solution Particle and its Application to Rechargeable Lithium Batteries. Advanced Functional Materials, 2013, 23, 1028-1036.	14.9	39

#	Article	IF	Citations
145	Quaternary Transition Metal Oxide Layered Framework: O3-Type Na[Ni _{0.32} Fe _{0.13} Co _{0.15} Mn _{0.40}]O ₂ Cathode Material for High-Performance Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 13500-13507.	3.1	39
146	Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A, 2019, 7, 202-211.	10.3	39
147	Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. Journal of Materials Chemistry A, 2021, 9, 15140-15178.	10.3	39
148	Improvement of High Voltage Cycling Performances of Li[Ni[sub 1/3]Co[sub 1/3]Mn[sub 1/3]]O[sub 2] at 55°C by a (NH[sub 4])[sub 3]AlF[sub 6] Coating. Electrochemical and Solid-State Letters, 2009, 12, A163.	2.2	38
149	Cycling Stability of Layered Potassium Manganese Oxide in Nonaqueous Potassium Cells. ACS Applied Materials & Company (1988) (1988) Materials & Company (1988) (1988) Materials & Company (1988) (1988	8.0	38
150	Optimization of Layered Cathode Material with Full Concentration Gradient for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 175-182.	3.1	37
151	An optimized approach toward high energy density cathode material for K-ion batteries. Energy Storage Materials, 2020, 27, 342-351.	18.0	37
152	Construction of silica-oxygen-borate hybrid networks on Al2O3-coated polyethylene separators realizing multifunction for high-performance lithium ion batteries. Journal of Power Sources, 2020, 472, 228445.	7.8	36
153	Microwave Synthesis of Spherical Li[Ni0.4Co0.2Mn0.4]O2Powders as a Positive Electrode Material for Lithium Batteries. Chemistry of Materials, 2007, 19, 2727-2729.	6.7	35
154	Optimization of microwave synthesis of Li[Ni0.4Co0.2Mn0.4]O2 as a positive electrode material for lithium batteries. Electrochimica Acta, 2008, 53, 3065-3074.	5.2	35
155	The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C–LiFePO[sub 4] Prepared via Coprecipitation. Journal of the Electrochemical Society, 2008, 155, A414.	2.9	35
156	Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25941-25951.	8.0	35
157	KTi ₂ (PO ₄) ₃ Electrode with a Long Cycling Stability for Potassiumâ€ion Batteries. Small, 2020, 16, e2001090.	10.0	35
158	Physical and Electrochemical Properties of Li[Ni[sub 0.4]Co[sub x]Mn[sub 0.6â^'x]]O[sub 2] (x=0.1â€"0.4) Electrode Materials Synthesized via Coprecipitation. Journal of the Electrochemical Society, 2007, 154, A937.	2.9	34
159	Good practice guide for papers on batteries for the Journal of Power Sources. Journal of Power Sources, 2020, 452, 227824.	7.8	34
160	Structural Investigation of Layered Li[sub $1\hat{a}^{\hat{a}}$]Mn[sub x]Cr[sub $1\hat{a}^{\hat{a}}$ x]O[sub 2] by XANES and In Situ XRD Measurements. Journal of the Electrochemical Society, 2003, 150, A1560.	2.9	33
161	Effect of excess lithium on LiNi0.5Mn0.5O2+ \hat{l} and its electrochemistry as lithium insertion material. Solid State lonics, 2004, 170, 139-144.	2.7	33
162	Improvement of cycling performance of Li1.1Mn1.9O4 at 60°C by NiO addition for Li-ion secondary batteries. Electrochimica Acta, 2006, 51, 5912-5919.	5.2	33

#	Article	IF	CITATIONS
163	Application of Ni-free high nitrogen stainless steel for bipolar plates of proton exchange membrane fuel cells. Electrochimica Acta, 2009, 54, 1127-1133.	5.2	33
164	Understanding the role of trace amount of Fe incorporated in Ni-rich Li[Ni1-x-yCoxMny]O2 cathode material. Journal of Alloys and Compounds, 2020, 835, 155342.	5.5	33
165	Effect of protecting metal oxide (Co3O4) layer on electrochemical properties of spinel Li1.1Mn1.9O4 as a cathode material for lithium battery applications. Journal of Power Sources, 2009, 189, 494-498.	7.8	32
166	Development of K4Fe3(PO4)2(P2O7) as a novel Fe-based cathode with high energy densities and excellent cyclability in rechargeable potassium batteries. Energy Storage Materials, 2020, 28, 47-54.	18.0	32
167	Synthetic optimization of orthorhombic LiMnO2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery. Solid State Ionics, 2002, 150, 199-205.	2.7	31
168	Microscale Core-Shell Structured Li[(Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1])[sub 0.8](Ni[sub 0.5]Mn[sub) Tj ETQq0 Solid-State Letters, 2006, 9, A171.	0 0 0 rgBT 2.2	Overlock 10
169	Structural, Electrochemical, and Thermal Aspects of Li[(Ni[sub 0.5]Mn[sub 0.5])[sub 1â^²x]Co[sub x]]O[sub 2]â€,(0â‰�â.02) for High-Voltage Application of Lithium-Ion Secondary Batteries. Journal of the Electrochemical Society, 2008, 155, A374.	2.9	31
170	Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt. Electrochimica Acta, 2009, 54, 5804-5812.	5.2	31
171	Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer. Journal of the Electrochemical Society, 2014, 161, A142-A148.	2.9	31
172	Effect of Mn in Li ₃ V _{2â€"<i>x</i>} Mn _{<i>x</i>} (PO ₄) ₃ as High Capacity Cathodes for Lithium Batteries. ACS Applied Materials & Applied	8.0	30
173	Nature-Derived Cellulose-Based Composite Separator for Sodium-Ion Batteries. Frontiers in Chemistry, 2020, 8, 153.	3.6	30
174	Gifts from Nature: Bioâ€Inspired Materials for Rechargeable Secondary Batteries. Advanced Materials, 2021, 33, e2006019.	21.0	30
175	Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries. Journal of Power Sources, 2017, 355, 140-146.	7.8	29
176	Development of Na2FePO4F/Conducting-Polymer composite as an exceptionally high performance cathode material for Na-ion batteries. Journal of Power Sources, 2019, 432, 1-7.	7.8	29
177	Mo[sup 6+]-Doped Li[Ni[sub (0.5+x)]Mn[sub (1.5â^²2x)]Mo[sub x]]O[sub 4] Spinel Materials for 5 V Lithium Secondary Batteries Prepared by Ultrasonic Spray Pyrolysis. Electrochemical and Solid-State Letters, 2004, 7, A451.	2.2	28
178	High nitrogen stainless steel as bipolar plates for proton exchange membrane fuel cells. Journal of Power Sources, 2008, 185, 815-821.	7.8	28
179	Unveiling yavapaiite-type K Fe(SO4)2 as a new Fe-based cathode with outstanding electrochemical performance for potassium-ion batteries. Nano Energy, 2019, 66, 104184.	16.0	28
180	Ultrasonic spray pyrolysis of nano crystalline spinel LiMn2O4 showing good cycling performance in the 3V range. Electrochimica Acta, 2006, 51, 4089-4095.	5.2	27

#	Article	IF	Citations
181	Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt. Journal of Power Sources, 2010, 195, 8297-8301.	7.8	27
182	Low Temperature Electrochemical Properties of Li[NixCoyMn1-x-y]O2Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1514-A1520.	2.9	27
183	Lattice parameter as a measure of electrochemical properties of LiMn2O4. Journal of Power Sources, 2001, 97-98, 454-457.	7.8	26
184	Marcasite iron sulfide as a high-capacity electrode material for sodium storage. Journal of Materials Chemistry A, 2018, 6, 17111-17119.	10.3	26
185	New Insight into Ethylenediaminetetraacetic Acid Tetrasodium Salt as a Sacrificing Sodium Ion Source for Sodium-Deficient Cathode Materials for Full Cells. ACS Applied Materials & Enterfaces, 2019, 11, 5957-5965.	8.0	26
186	Effects of manganese and cobalt on the electrochemical and thermal properties of layered Li[Ni0.52Co0.16+Mn0.32â^]O2 cathode materials. Journal of Power Sources, 2011, 196, 6710-6715.	7.8	25
187	Layered K _{0.28} MnO ₂ Â-0.15H ₂ O as a Cathode Material for Potassium-Ion Intercalation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43312-43319.	8.0	25
188	Preparation of layered LiMnxCr1â^'xO2 solid solution by emulsion drying method as lithium intercalation compounds. Electrochemistry Communications, 2002, 4, 397-401.	4.7	24
189	Nanosized TiN–SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2008, 54, 574-581.	5.2	24
190	Nb-Doped titanium phosphate for sodium storage: electrochemical performance and structural insights. Journal of Materials Chemistry A, 2019, 7, 5748-5759.	10.3	24
191	Passivation of aluminum current collectors in non-aqueous carbonate solutions containing sodium or potassium hexafluorophosphate salts. Journal of Materials Chemistry A, 2019, 7, 13012-13018.	10.3	24
192	Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003399.	19.5	24
193	A New Approach to Stable Cationic and Anionic Redox Activity in O3â€Layered Cathode for Sodiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2100901.	19.5	24
194	Effect of Manganese Content on the Electrochemical and Thermal Stabilities of Li[Ni[sub 0.58]Co[sub 0.28a^'x]Mn[sub 0.14+x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A1335.	2.9	23
195	Carbon-coated anatase titania as a high rate anode for lithium batteries. Journal of Power Sources, 2015, 281, 362-369.	7.8	23
196	Rocksalt-type metal sulfide anodes for high-rate sodium storage. Journal of Materials Chemistry A, 2018, 6, 6867-6873.	10.3	23
197	Impact of Na ₂ MoO ₄ nanolayers autogenously formed on tunnel-type Na _{0.44} MnO ₂ . Journal of Materials Chemistry A, 2019, 7, 13522-13530.	10.3	23
198	Emulsion Drying Preparation of LiFePO4/C Composite and Its Enhanced High-rate Performance at 50 \hat{A}° C. Chemistry Letters, 2003, 32, 566-567.	1.3	22

#	Article	IF	Citations
199	Single-crystalline particle Ni-based cathode materials for lithium-ion batteries: Strategies, status, and challenges to improve energy density and cyclability. Energy Storage Materials, 2022, 51, 568-587.	18.0	22
200	Synthesis of Li[Ni1/3Co1/3Mn1/3]O2â^'zFzvia Coprecipitation. Chemistry Letters, 2004, 33, 1388-1389.	1.3	21
201	Development of a new alluaudite-based cathode material with high power and long cyclability for application in Na ion batteries in real-life. Journal of Materials Chemistry A, 2017, 5, 22334-22340.	10.3	20
202	New conversion chemistry of CuSO4 as ultra-high-energy cathode material for rechargeable sodium battery. Energy Storage Materials, 2020, 24, 458-466.	18.0	20
203	Development of a New Mixed-Polyanion Cathode with Superior Electrochemical Performances for Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 163-171.	6.7	20
204	Rational design of Co-free layered cathode material for sodium-ion batteries. Journal of Power Sources, 2021, 514, 230581.	7.8	20
205	Orthorhombic LiMnO2as a High Capacity Cathode for Lithium-Ion Battery Synthesized by Hydrothermal Route at 170 °C. Chemistry Letters, 2001, 30, 80-81.	1.3	19
206	Structural Transformation of Li[Ni[sub 0.5â^'x]Co[sub 2x]Mn[sub 0.5â^'x]]O[sub 2] (2xâ‰ 0 .1) Charged in High-Voltage Range (4.5â€,V). Journal of the Electrochemical Society, 2007, 154, A520.	2.9	19
207	Evaluation of polymer electrolyte membrane fuel cells by electrochemical impedance spectroscopy under different operation conditions and corrosion. Journal of Power Sources, 2010, 195, 5501-5507.	7.8	19
208	Stability of type 310S stainless steel bipolar plates tested at various current densities in proton exchange membrane fuel cells. Electrochimica Acta, 2016, 211, 754-760.	5.2	19
209	Unexpectedly high electrochemical performances of a monoclinic Na _{2.4} V ₂ (PO ₄) ₃ /conductive polymer composite for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17571-17578.	10.3	19
210	Effects of Molybdenum Doping on the Layered Li[Ni0.5+xMn0.5â^2xMox]O2Cathode Materials for Lithium Secondary Batteries. Chemistry Letters, 2004, 33, 2-3.	1.3	18
211	Synthesis and electrochemical properties of spherical spinel Li1.05M0.05Mn1.9O4 (M=Mg and Al) as a cathode material for lithium-ion batteries by co-precipitation method. Journal of Power Sources, 2007, 174, 726-729.	7.8	18
212	Nanorod and Nanoparticle Shells in Concentration Gradient Core–Shell Lithium Oxides for Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 3295-3303.	6.8	18
213	A new synthetic method of titanium oxyfluoride and its application as an anode material for rechargeable lithium batteries. Journal of Power Sources, 2015, 288, 376-383.	7.8	18
214	Long Life Anode Material for Potassium Ion Batteries with High-Rate Potassium Storage. Energy Storage Materials, 2021, 40, 197-208.	18.0	18
215	Hydrothermal phase formation of orthorhombic LiMnO2 and its derivatives as lithium intercalation compounds. Solid State Ionics, 2006, 177, 733-739.	2.7	17
216	Development of high power lithium-ion batteries: Layer Li[Ni0.4Co0.2Mn0.4]O2 and spinel Li[Li0.1Al0.05Mn1.85]O4. Journal of Power Sources, 2011, 196, 7039-7043.	7.8	17

#	Article	IF	Citations
217	High-Voltage Stability in KFSI Nonaqueous Carbonate Solutions for Potassium-Ion Batteries: Current Collectors and Coin-Cell Components. ACS Applied Materials & Interfaces, 2020, 12, 42723-42733.	8.0	17
218	Synthesis and electrochemical properties of layered LiNi1/2Mn1/2O2prepared by coprecipitation. Journal of Applied Electrochemistry, 2005, 35, 151-156.	2.9	16
219	Carbothermal synthesis of molybdenum(IV) oxide as a high rate anode for rechargeable lithium batteries. Journal of Power Sources, 2015, 280, 1-4.	7.8	16
220	Effect of Lithium in Transition Metal Layers of Ni-Rich Cathode Materials on Electrochemical Properties. Journal of the Electrochemical Society, 2015, 162, A2313-A2318.	2.9	16
221	Hollanditeâ€Type VO _{1.75} (OH) _{0.5} : Effective Sodium Storage for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1900603.	19.5	16
222	Promising sodium storage of bismuthinite by conversion chemistry. Energy Storage Materials, 2021, 38, 241-248.	18.0	16
223	Na ₂ Fe ₂ F ₇ : a fluoride-based cathode for high power and long life Na-ion batteries. Energy and Environmental Science, 2021, 14, 1469-1479.	30.8	16
224	High Electrochemical Li Intercalation in Titanate Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14034-14039.	3.1	15
225	KV3O8 with a large interlayer as a viable cathode material for zinc-ion batteries. Journal of Power Sources, 2020, 478, 229072.	7.8	15
226	Oxalate-Based High-Capacity Conversion Anode for Potassium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 3743-3750.	6.7	15
227	Bismuth telluride anode boosting highly reversible electrochemical activity for potassium storage. Energy Storage Materials, 2021, 43, 411-421.	18.0	15
228	High voltage retainable Ni-saving high nitrogen stainless steel bipolar plates for proton exchange membrane fuel cells: Phenomena and mechanism. Journal of Power Sources, 2012, 202, 92-99.	7.8	14
229	Electrochemical stability of aluminum current collector in alkyl carbonate electrolytes containing lithium bis(pentafluoroethylsulfonyl)imide for lithium-ion batteries. Journal of Power Sources, 2014, 271, 167-173.	7.8	14
230	Monoclinic Fe2(SO4)3: A new Fe-based cathode material with superior electrochemical performances for Na-ion batteries. Journal of Power Sources, 2019, 434, 226750.	7.8	14
231	Rechargeable zinc-ion batteries with manganese dioxide cathode: How critical is choice of manganese dioxide polymorphs in aqueous solutions?. Journal of Power Sources, 2022, 523, 231023.	7.8	14
232	Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries. Energy Storage Materials, 2022, 46, 76-89.	18.0	14
233	A Promising Alternative to PEMFC Graphite Bipolar Plates: Surface Modified Type 304 Stainless Steel with TiN Nanoparticles and Elastic Styrene Butadiene Rubber Particles. Fuel Cells, 2010, 10, 545-555.	2.4	13
234	Preparation of Carbon Blacks by Liquid Phase Plasma (LPP) Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 7381-7385.	0.9	13

#	Article	IF	Citations
235	The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries. ACS Nano, 2019, 13, 11707-11716.	14.6	13
236	Revealing sodium storage mechanism in lithium titanium phosphate: Combined experimental and theoretical study. Journal of Power Sources, 2020, 455, 227976.	7.8	13
237	Applicability of extra low interstitials ferritic stainless steels for bipolar plates of proton exchange membrane fuel cells. Journal of Power Sources, 2010, 195, 7181-7186.	7.8	12
238	Direct observation of the passive layer on high nitrogen stainless steel used as bipolar plates for proton exchange membrane fuel cells. Journal of Power Sources, 2012, 210, 92-95.	7.8	12
239	Surface coating effect on thermal properties of delithiated lithium nickel manganese layer oxide. Journal of Power Sources, 2015, 282, 511-519.	7.8	12
240	High-power rhombohedral-Fe2(SO4)3 with outstanding cycle-performance as Fe-based cathode for K-ion batteries. Energy Storage Materials, 2020, 33, 276-282.	18.0	12
241	WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries. Molecules, 2021, 26, 377.	3.8	12
242	Thermal properties of fully delithiated olivines. Journal of Power Sources, 2014, 256, 479-484.	7.8	11
243	Confinement of nanosized tin(IV) oxide particles on rGO sheets and its application to sodium-ion full cells as a high capacity anode material. Journal of Alloys and Compounds, 2018, 731, 339-346.	5.5	11
244	Facilitating sustainable oxygen-redox chemistry for P3-type cathode materials for sodium-ion batteries. Energy Storage Materials, 2022, 46, 329-343.	18.0	11
245	Hydrothermal Synthesis of Layered Li[Ni0.5Mn0.5]O2as Lithium Intercalation Material. Chemistry Letters, 2004, 33, 818-819.	1.3	10
246	Spinel lithium manganese oxide synthesized under a pressurized oxygen atmosphere. Electrochimica Acta, 2010, 55, 8397-8401.	5.2	10
247	Exceptional Effect of Benzene in Uniform Carbon Coating of SiO <i>_x</i> Nanocomposite for High-Performance Li-lon Batteries. Journal of the Electrochemical Society, 2018, 165, A1247-A1253.	2.9	10
248	Conversion Chemistry of Cobalt Oxalate for Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40523-40530.	8.0	10
249	Exceptionally high-energy tunnel-type V1.5Cr0.5O4.5H nanocomposite as a novel cathode for Na-ion batteries. Nano Energy, 2020, 77, 105175.	16.0	10
250	Synthesis of Orthorhombic LiMnO2as a High Capacity Cathode for Li-Ion Battery by Emulsion Drying Method. Chemistry Letters, 2001, 30, 574-575.	1.3	9
251	Electrochemical properties of the TiO2(B) powders ball mill treated for lithium-ion battery application. Chemistry Central Journal, 2013, 7, 174.	2.6	9
252	Effect of anatase phase on electrochemical properties of the TiO2(B) negative electrode for lithium-ion battery application. Current Applied Physics, 2013, 13, S148-S151.	2.4	9

#	Article	IF	Citations
253	Are type 316L stainless steel coin cells stable in nonaqueous carbonate solutions containing NaPF ₆ or KPF ₆ salt?. Journal of Materials Chemistry A, 2019, 7, 26250-26260.	10.3	8
254	Synthesis and Electrochemical Reaction of a Pitch Carbon-Coated Zinc Vanadium Oxide Anode with Excellent Electrochemical Performance for Rechargeable Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 1908-1915.	6.7	8
255	Highly concentrated electrolyte enabling high-voltage application of metallic components for potassium-ion batteries. Journal of Power Sources, 2021, 510, 230436.	7.8	8
256	Microstructural Effect of Carbon Blacks for the Application in Lithium Ion Batteries. Japanese Journal of Applied Physics, 2013, 52, 11NM01.	1.5	7
257	Synthesis of LiVOPO ₄ by Emulsion Drying Method for Use as an Anode Material for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 25856-25862.	8.0	7
258	Pulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content. Journal of Power Sources, 2020, 450, 227605.	7.8	7
259	Bioâ€Derived Surface Layer Suitable for Long Term Cycling Niâ€Rich Cathode for Lithium″on Batteries. Small, 2021, 17, e2104532.	10.0	7
260	A Separate Style of Stainless Steel Bipolar Plate for PEMFC and its Corrosion Behavior. Zairyo To Kankyo/ Corrosion Engineering, 2011, 60, 432-434.	0.2	6
261	Development of Novel Cathode with Large Lithium Storage Mechanism Based on Pyrophosphateâ€Based Conversion Reaction for Rechargeable Lithium Batteries. Small Methods, 2020, 4, 1900847.	8.6	5
262	Cobalt Doped Orthorhombic LiMnO2as Cathode Materials for Lithium-Ion Batteries. Chemistry Letters, 2001, 30, 1114-1115.	1.3	4
263	Preparation of LiFePO ₄ as Lithium Intercalation Compound by Emulsion Drying Method. Electrochemistry, 2003, 71, 177-179.	1.4	4
264	Exceptional effect of glassy lithium fluorophosphate on Mn-rich olivine cathode material for high-performance Li ion batteries. Journal of Power Sources, 2018, 374, 55-60.	7.8	4
265	Performance improvement of liquid phase plasma processed carbon blacks electrode in lithium ion battery applications. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1689-1693.	2.2	3
266	An exceptionally large energy cathode with the K–SO ₄ –Cu conversion reaction for potassium rechargeable batteries. Journal of Materials Chemistry A, 2021, 9, 5475-5484.	10.3	3
267	Surface Properties of Stainless Steel Cathodically Treated in Nitrate Solution and its Application to PEFC Bipolar Plates. Zairyo To Kankyo/ Corrosion Engineering, 2013, 62, 439-442.	0.2	3
268	Layered Ni-rich Cathode Materials. , 2019, , 26-43.		2
269	Sulfurized Carbon Composite with Unprecedentedly High Tap Density for Sodium Storage. Advanced Energy Materials, 2022, 12, .	19.5	2
270	Effect of Water on the Performance of Carbon Blacks Anode Material Processed by Plasma in the Benzene Solution. Science of Advanced Materials, 2014, 6, 1594-1598.	0.7	1

#	Article	IF	CITATIONS
271	Nondestructive Evaluation of Concrete Environment against Corrosion of Reinforcing Bar Using the Magnetic Corrosion Probe. Zairyo To Kankyo/ Corrosion Engineering, 2010, 59, 75-79.	0.2	0