## Stephen L Buchwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036476/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Palladium-Catalyzed Suzukiâ~'Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine<br>Ligands. Accounts of Chemical Research, 2008, 41, 1461-1473.                                                                                                     | 15.6 | 2,222     |
| 2  | Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chemical Reviews, 2016, 116, 12564-12649.                                                                                                                                                         | 47.7 | 1,989     |
| 3  | Biaryl Phosphane Ligands in Palladium atalyzed Amination. Angewandte Chemie - International Edition,<br>2008, 47, 6338-6361.                                                                                                                                        | 13.8 | 1,812     |
| 4  | Rational Development of Practical Catalysts for Aromatic Carbonâ^'Nitrogen Bond Formation.<br>Accounts of Chemical Research, 1998, 31, 805-818.                                                                                                                     | 15.6 | 1,707     |
| 5  | Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide. Chemical Science, 2011, 2, 27-50.                                                                                                                                                               | 7.4  | 1,349     |
| 6  | A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions:Â Room-Temperature Suzuki<br>Couplings and Amination of Unactivated Aryl Chlorides. Journal of the American Chemical Society,<br>1998, 120, 9722-9723.                                    | 13.7 | 868       |
| 7  | Expanding Pd-Catalyzed Câ^'N Bond-Forming Processes:  The First Amidation of Aryl Sulfonates, Aqueous<br>Amination, and Complementarity with Cu-Catalyzed Reactions. Journal of the American Chemical<br>Society, 2003, 125, 6653-6655.                             | 13.7 | 737       |
| 8  | The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides. Science, 2010, 328, 1679-1681.                                                                                                                                                                      | 12.6 | 707       |
| 9  | Simple, Efficient Catalyst System for the Palladium-Catalyzed Amination of Aryl Chlorides, Bromides, and Triflates. Journal of Organic Chemistry, 2000, 65, 1158-1174.                                                                                              | 3.2  | 698       |
| 10 | A Highly Active Catalyst for the Room-Temperature Amination and Suzuki Coupling of Aryl Chlorides.<br>Angewandte Chemie - International Edition, 1999, 38, 2413-2416.                                                                                               | 13.8 | 652       |
| 11 | Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides. Science, 2009, 325, 1661-1664.                                                                                                                                            | 12.6 | 594       |
| 12 | Design and preparation of new palladium precatalysts for C–C and C–N cross-coupling reactions.<br>Chemical Science, 2013, 4, 916-920.                                                                                                                               | 7.4  | 572       |
| 13 | Copperâ^'Diamine-CatalyzedN-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles, and Triazoles.<br>Journal of Organic Chemistry, 2004, 69, 5578-5587.                                                                                                           | 3.2  | 541       |
| 14 | Novel Electron-Rich Bulky Phosphine Ligands Facilitate the Palladium-Catalyzed Preparation of Diaryl<br>Ethers. Journal of the American Chemical Society, 1999, 121, 4369-4378.                                                                                     | 13.7 | 521       |
| 15 | A Highly Active Catalyst for Pd-Catalyzed Amination Reactions: Cross-Coupling Reactions Using Aryl<br>Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides. Journal of<br>the American Chemical Society, 2008, 130, 13552-13554. | 13.7 | 474       |
| 16 | Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science, 2016, 353, 279-283.                                                                                                                                                                | 12.6 | 472       |
| 17 | On the Role of Metal Contaminants in Catalyses with FeCl <sub>3</sub> . Angewandte Chemie -<br>International Edition, 2009, 48, 5586-5587.                                                                                                                          | 13.8 | 468       |
| 18 | Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes. Angewandte Chemie - International<br>Edition, 2016, 55, 48-57.                                                                                                                                      | 13.8 | 447       |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pd(PhCN)2Cl2/P(t-Bu)3:  A Versatile Catalyst for Sonogashira Reactions of Aryl Bromides at Room<br>Temperature. Organic Letters, 2000, 2, 1729-1731.                                                                                     | 4.6  | 432       |
| 20 | Scope and Limitations of the Pd/BINAP-Catalyzed Amination of Aryl Bromides. Journal of Organic Chemistry, 2000, 65, 1144-1157.                                                                                                           | 3.2  | 432       |
| 21 | Palladium-Catalyzed Intermolecular Coupling of Aryl Halides and Amides. Organic Letters, 2000, 2, 1101-1104.                                                                                                                             | 4.6  | 395       |
| 22 | A general and efficient method for the palladium-catalyzed cross-coupling of thiols and secondary phosphines. Tetrahedron, 2004, 60, 7397-7403.                                                                                          | 1.9  | 395       |
| 23 | General Catalysts for the Suzuki-Miyaura and Sonogashira Coupling Reactions of Aryl Chlorides and<br>for the Coupling of Challenging Substrate Combinations in Water. Angewandte Chemie - International<br>Edition, 2005, 44, 6173-6177. | 13.8 | 379       |
| 24 | A New Class of Easily Activated Palladium Precatalysts for Facile Câ^'N Cross-Coupling Reactions and the Low Temperature Oxidative Addition of Aryl Chlorides. Journal of the American Chemical Society, 2008, 130, 6686-6687.           | 13.7 | 378       |
| 25 | Enantio- and Regioselective CuH-Catalyzed Hydroamination of Alkenes. Journal of the American<br>Chemical Society, 2013, 135, 15746-15749.                                                                                                | 13.7 | 377       |
| 26 | Organometallic palladium reagents for cysteine bioconjugation. Nature, 2015, 526, 687-691.                                                                                                                                               | 27.8 | 377       |
| 27 | Copper-Catalyzed Coupling of Aryl Iodides with Aliphatic Alcohols. Organic Letters, 2002, 4, 973-976.                                                                                                                                    | 4.6  | 366       |
| 28 | Copper-Catalyzed Domino Halide Exchange-Cyanation of Aryl Bromides. Journal of the American<br>Chemical Society, 2003, 125, 2890-2891.                                                                                                   | 13.7 | 365       |
| 29 | Domino Cu-Catalyzed CN Coupling/Hydroamidation: A Highly Efficient Synthesis of Nitrogen<br>Heterocycles. Angewandte Chemie - International Edition, 2006, 45, 7079-7082.                                                               | 13.8 | 357       |
| 30 | Cross-coupling in flow. Chemical Society Reviews, 2011, 40, 5010.                                                                                                                                                                        | 38.1 | 354       |
| 31 | Pd atalyzed Synthesis of ArSCF <sub>3</sub> Compounds under Mild Conditions. Angewandte<br>Chemie - International Edition, 2011, 50, 7312-7314.                                                                                         | 13.8 | 341       |
| 32 | The Synthesis of Aminopyridines:Â A Method Employing Palladium-Catalyzed Carbonâ^'Nitrogen Bond<br>Formation. Journal of Organic Chemistry, 1996, 61, 7240-7241.                                                                         | 3.2  | 338       |
| 33 | Nickel-Catalyzed Amination of Aryl Chlorides. Journal of the American Chemical Society, 1997, 119, 6054-6058.                                                                                                                            | 13.7 | 321       |
| 34 | Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 2015, 349, 62-66.                                                                                                                      | 12.6 | 316       |
| 35 | Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chemical Science, 2011, 2, 57-68.                                                       | 7.4  | 315       |
| 36 | Asymmetric Conjugate Reduction of α,β-Unsaturated Esters Using a Chiral Phosphineâ^'Copper Catalyst.<br>Journal of the American Chemical Society, 1999, 121, 9473-9474.                                                                  | 13.7 | 296       |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Catalytic Enantioselective Conjugate Reduction of Lactones and Lactams. Journal of the American<br>Chemical Society, 2003, 125, 11253-11258.                                                                                                         | 13.7 | 279       |
| 38 | Reevaluation of the Mechanism of the Amination of Aryl Halides Catalyzed by BINAP-Ligated Palladium Complexes. Journal of the American Chemical Society, 2006, 128, 3584-3591.                                                                       | 13.7 | 264       |
| 39 | Versatile Enantioselective Synthesis of Functionalized Lactones via Copper-Catalyzed Radical<br>Oxyfunctionalization of Alkenes. Journal of the American Chemical Society, 2015, 137, 8069-8077.                                                     | 13.7 | 264       |
| 40 | Synthesis ofN-Aryl Hydrazides by Copper-Catalyzed Coupling of Hydrazides with Aryl Iodides. Organic<br>Letters, 2001, 3, 3803-3805.                                                                                                                  | 4.6  | 261       |
| 41 | Palladium-Catalyzedα-Arylation of Esters. Journal of the American Chemical Society, 2001, 123, 7996-8002.                                                                                                                                            | 13.7 | 258       |
| 42 | Palladium-Catalyzed Enantioselective α-Arylation and α-Vinylation of Oxindoles Facilitated by an Axially<br>Chiral P-Stereogenic Ligand. Journal of the American Chemical Society, 2009, 131, 9900-9901.                                             | 13.7 | 256       |
| 43 | Copper-Catalyzed Coupling of Arylboronic Acids and Amines. Organic Letters, 2001, 3, 2077-2079.                                                                                                                                                      | 4.6  | 253       |
| 44 | Use of Tunable Ligands Allows for Intermolecular Pd-Catalyzed Câ^'O Bond Formation. Journal of the<br>American Chemical Society, 2005, 127, 8146-8149.                                                                                               | 13.7 | 252       |
| 45 | An Efficient Intermolecular Palladium-Catalyzed Synthesis of Aryl Ethers. Journal of the American<br>Chemical Society, 2001, 123, 10770-10771.                                                                                                       | 13.7 | 245       |
| 46 | A Multiligand Based Pd Catalyst for Câ^'N Cross-Coupling Reactions. Journal of the American Chemical<br>Society, 2010, 132, 15914-15917.                                                                                                             | 13.7 | 240       |
| 47 | Insights into the Origin of High Activity and Stability of Catalysts Derived from Bulky, Electron-Rich<br>Monophosphinobiaryl Ligands in the Pd-Catalyzed Câ°'N Bond Formation. Journal of the American<br>Chemical Society, 2003, 125, 13978-13980. | 13.7 | 235       |
| 48 | Water-Mediated Catalyst Preactivation: An Efficient Protocol for Câ^'N Cross-Coupling Reactions.<br>Organic Letters, 2008, 10, 3505-3508.                                                                                                            | 4.6  | 235       |
| 49 | CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Accounts of Chemical Research, 2020, 53, 1229-1243.                                                                                                                | 15.6 | 233       |
| 50 | Copper-catalyzed asymmetric addition of olefin-derived nucleophiles to ketones. Science, 2016, 353, 144-150.                                                                                                                                         | 12.6 | 227       |
| 51 | Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature, 2016, 532, 353-356.                                                                                                                                           | 27.8 | 227       |
| 52 | An Improved Synthesis of Functionalized Biphenyl-Based Phosphine Ligands. Journal of Organic<br>Chemistry, 2000, 65, 5334-5341.                                                                                                                      | 3.2  | 226       |
| 53 | An Improved Cu-Based Catalyst System for the Reactions of Alcohols with Aryl Halides. Journal of Organic Chemistry, 2008, 73, 284-286.                                                                                                               | 3.2  | 226       |
| 54 | Overcoming the Challenges of Solid Bridging and Constriction during Pd-Catalyzed Câ^'N Bond<br>Formation in Microreactors. Organic Process Research and Development, 2010, 14, 1347-1357.                                                            | 2.7  | 219       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Pd-Catalyzed N-Arylation of Secondary Acyclic Amides: Catalyst Development, Scope, and<br>Computational Study. Journal of the American Chemical Society, 2009, 131, 16720-16734.                                                     | 13.7 | 213       |
| 56 | Copper-catalysed selective hydroamination reactions of alkynes. Nature Chemistry, 2015, 7, 38-44.                                                                                                                                    | 13.6 | 213       |
| 57 | Asymmetric Hydroarylation of Vinylarenes Using a Synergistic Combination of CuH and Pd Catalysis.<br>Journal of the American Chemical Society, 2016, 138, 8372-8375.                                                                 | 13.7 | 212       |
| 58 | Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation. Chemical Science, 2011, 2, 287-290.                                                                                 | 7.4  | 203       |
| 59 | Efficient Palladium-CatalyzedN-Arylation of Indoles. Organic Letters, 2000, 2, 1403-1406.                                                                                                                                            | 4.6  | 201       |
| 60 | Enantioselective CuH-Catalyzed Anti-Markovnikov Hydroamination of 1,1-Disubstituted Alkenes.<br>Journal of the American Chemical Society, 2014, 136, 15913-15916.                                                                    | 13.7 | 201       |
| 61 | Palladium-Catalyzed Intermolecular Carbonâ^'Oxygen Bond Formation:  A New Synthesis of Aryl Ethers.<br>Journal of the American Chemical Society, 1997, 119, 3395-3396.                                                               | 13.7 | 200       |
| 62 | Titanocene-Catalyzed Asymmetric Ketone Hydrosilylation:Â The Effect of Catalyst Activation Protocol<br>and Additives on the Reaction Rate and Enantioselectivity. Journal of the American Chemical Society,<br>1999, 121, 5640-5644. | 13.7 | 198       |
| 63 | Suzuki-Miyaura Cross-Coupling of Unprotected, Nitrogen-Rich Heterocycles: Substrate Scope and Mechanistic Investigation. Journal of the American Chemical Society, 2013, 135, 12877-12885.                                           | 13.7 | 197       |
| 64 | The Development of Efficient Protocols for the Palladium-Catalyzed Cyclization Reactions of Secondary Amides and Carbamates. Organic Letters, 1999, 1, 35-38.                                                                        | 4.6  | 195       |
| 65 | Microfluidic electrochemistry for single-electron transfer redox-neutral reactions. Science, 2020, 368, 1352-1357.                                                                                                                   | 12.6 | 194       |
| 66 | Palladium-Catalyzed Amination of Aryl Triflates. Journal of Organic Chemistry, 1997, 62, 1264-1267.                                                                                                                                  | 3.2  | 191       |
| 67 | <i>N</i> -Substituted 2-Aminobiphenylpalladium Methanesulfonate Precatalysts and Their Use in C–C<br>and C–N Cross-Couplings. Journal of Organic Chemistry, 2014, 79, 4161-4166.                                                     | 3.2  | 189       |
| 68 | Ligand–Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins.<br>Journal of the American Chemical Society, 2017, 139, 16548-16555.                                                             | 13.7 | 189       |
| 69 | Palladium-Catalyzed Amination of Aryl Iodides. Journal of Organic Chemistry, 1996, 61, 1133-1135.                                                                                                                                    | 3.2  | 188       |
| 70 | New Ammonia Equivalents for the Pd-Catalyzed Amination of Aryl Halides. Organic Letters, 2001, 3, 3417-3419.                                                                                                                         | 4.6  | 187       |
| 71 | A Single Phosphine Ligand Allows Palladiumâ€Catalyzed Intermolecular CO Bond Formation with<br>Secondary and Primary Alcohols. Angewandte Chemie - International Edition, 2011, 50, 9943-9947.                                      | 13.8 | 186       |
| 72 | Nickel-BINAP Catalyzed Enantioselective α-Arylation of α-Substituted γ-Butyrolactones. Journal of the<br>American Chemical Society, 2002, 124, 3500-3501.                                                                            | 13.7 | 183       |

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Structural Insights into Active Catalyst Structures and Oxidative Addition to<br>(Biaryl)phosphineâ^Palladium Complexes via Density Functional Theory and Experimental Studies.<br>Organometallics, 2007, 26, 2183-2192.                                                    | 2.3  | 183       |
| 74 | Palladium-Catalyzed Amination of Aryl Bromides:Â Use of Phosphinoether Ligands for the Efficient<br>Coupling of Acyclic Secondary Amines. Journal of Organic Chemistry, 1997, 62, 1568-1569.                                                                                | 3.2  | 181       |
| 75 | Synthesis of Î <sup>2</sup> -Alkyl Cyclopentanones in High Enantiomeric Excess via Copper-Catalyzed Asymmetric<br>Conjugate Reduction. Journal of the American Chemical Society, 2000, 122, 6797-6798.                                                                      | 13.7 | 180       |
| 76 | Eine einfache katalytische Methode zur Synthese von Arylaminen aus Arylbromiden. Angewandte<br>Chemie, 1995, 107, 1456-1459.                                                                                                                                                | 2.0  | 172       |
| 77 | Cross Coupling. Accounts of Chemical Research, 2008, 41, 1439-1439.                                                                                                                                                                                                         | 15.6 | 170       |
| 78 | An Efficient Process for Pd-Catalyzed Câ^'N Cross-Coupling Reactions of Aryl lodides: Insight Into Controlling Factors. Journal of the American Chemical Society, 2009, 131, 5766-5768.                                                                                     | 13.7 | 170       |
| 79 | Arylation Chemistry for Bioconjugation. Angewandte Chemie - International Edition, 2019, 58, 4810-4839.                                                                                                                                                                     | 13.8 | 169       |
| 80 | Use of Polymer-Supported Dialkylphosphinobiphenyl Ligands for Palladium-Catalyzed Amination and<br>Suzuki Reactions. Journal of Organic Chemistry, 2001, 66, 3820-3827.                                                                                                     | 3.2  | 166       |
| 81 | Suzuki–Miyaura Crossâ€Coupling Reactions in Flow: Multistep Synthesis Enabled by a Microfluidic<br>Extraction. Angewandte Chemie - International Edition, 2011, 50, 5943-5946.                                                                                              | 13.8 | 156       |
| 82 | Catalytic Asymmetric Vinylation of Ketone Enolates. Organic Letters, 2001, 3, 1897-1900.                                                                                                                                                                                    | 4.6  | 155       |
| 83 | CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications.<br>Journal of the American Chemical Society, 2019, 141, 5062-5070.                                                                                                    | 13.7 | 151       |
| 84 | The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates. Organic Letters, 2011, 13, 6552-6555.                                                                                                                                                                     | 4.6  | 149       |
| 85 | Pd-Catalyzed Nucleophilic Fluorination of Aryl Bromides. Journal of the American Chemical Society, 2014, 136, 3792-3795.                                                                                                                                                    | 13.7 | 149       |
| 86 | Biaryl monophosphine ligands in palladium-catalyzed C–N coupling: An updated User's guide.<br>Tetrahedron, 2019, 75, 4199-4211.                                                                                                                                             | 1.9  | 149       |
| 87 | Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles. Journal of the American Chemical Society, 2017, 139, 2192-2195.                                                                                                      | 13.7 | 145       |
| 88 | Insights into Amine Binding to Biaryl Phosphine Palladium Oxidative Addition Complexes and Reductive<br>Elimination from Biaryl Phosphine Arylpalladium Amido Complexes via Density Functional Theory.<br>Journal of the American Chemical Society, 2007, 129, 12003-12010. | 13.7 | 143       |
| 89 | Evidence for in Situ Catalyst Modification during the Pd-Catalyzed Conversion of Aryl Triflates to Aryl Fluorides. Journal of the American Chemical Society, 2011, 133, 18106-18109.                                                                                        | 13.7 | 142       |
| 90 | An Improved Method for the Palladium-Catalyzed Amination of Aryl lodides. Journal of Organic<br>Chemistry, 2001, 66, 2560-2565.                                                                                                                                             | 3.2  | 137       |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Enantioselective Synthesis of αâ€Aminosilanes by Copperâ€Catalyzed Hydroamination of Vinylsilanes.<br>Angewandte Chemie - International Edition, 2015, 54, 1638-1641.                                 | 13.8 | 133       |
| 92  | The Evolution of Pd <sup>0</sup> /Pd <sup>II</sup> -Catalyzed Aromatic Fluorination. Accounts of Chemical Research, 2016, 49, 2146-2157.                                                              | 15.6 | 133       |
| 93  | A Method for the Asymmetric Hydrosilylation ofN-Aryl Imines. Organic Letters, 2000, 2, 713-715.                                                                                                       | 4.6  | 132       |
| 94  | Improved Functional Group Compatibility in the Palladium-Catalyzed Amination of Aryl Bromides.<br>Tetrahedron Letters, 1997, 38, 6359-6362.                                                           | 1.4  | 131       |
| 95  | Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common<br>Soluble Base in C–N Coupling. Journal of the American Chemical Society, 2018, 140, 4721-4725.      | 13.7 | 130       |
| 96  | Rational Ligand Design for the Arylation of Hindered Primary Amines Guided by Reaction Progress<br>Kinetic Analysis. Journal of the American Chemical Society, 2015, 137, 3085-3092.                  | 13.7 | 129       |
| 97  | Suzuki–Miyaura cross-coupling optimization enabled by automated feedback. Reaction Chemistry and Engineering, 2016, 1, 658-666.                                                                       | 3.7  | 125       |
| 98  | An Improved Catalyst System for the Pd-Catalyzed Fluorination of (Hetero)Aryl Triflates. Organic<br>Letters, 2013, 15, 5602-5605.                                                                     | 4.6  | 124       |
| 99  | Highly Diastereo- and Enantioselective CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines. Journal of the American Chemical Society, 2015, 137, 4666-4669.                                        | 13.7 | 124       |
| 100 | Design of Modified Amine Transfer Reagents Allows the Synthesis of α-Chiral Secondary Amines via<br>CuH-Catalyzed Hydroamination. Journal of the American Chemical Society, 2015, 137, 9716-9721.     | 13.7 | 123       |
| 101 | Asymmetric Cu-Catalyzed 1,4-Dearomatization of Pyridines and Pyridazines without Preactivation of the American Chemical Society, 2018, 140, 5057-5060.                                                | 13.7 | 123       |
| 102 | Electronic Dependence of Câ^'O Reductive Elimination from Palladium (Aryl)neopentoxide Complexes.<br>Journal of the American Chemical Society, 1998, 120, 6504-6511.                                  | 13.7 | 120       |
| 103 | Expedited Palladium-Catalyzed Amination of Aryl Nonaflates through the Use of<br>Microwave-Irradiation and Soluble Organic Amine Bases. Journal of Organic Chemistry, 2006, 71,<br>430-433.           | 3.2  | 119       |
| 104 | Enantioselective Synthesis of Carbo- and Heterocycles through a CuH-Catalyzed Hydroalkylation Approach. Journal of the American Chemical Society, 2015, 137, 10524-10527.                             | 13.7 | 118       |
| 105 | Novel Syntheses of Tetrahydropyrroloquinolines:Â Applications to Alkaloid Synthesis. Journal of the<br>American Chemical Society, 1996, 118, 1028-1030.                                               | 13.7 | 117       |
| 106 | Mechanistic Studies Lead to Dramatically Improved Reaction Conditions for the Cu-Catalyzed<br>Asymmetric Hydroamination of Olefins. Journal of the American Chemical Society, 2015, 137, 14812-14818. | 13.7 | 112       |
| 107 | Pharmaceutical diversification via palladium oxidative addition complexes. Science, 2019, 363, 405-408.                                                                                               | 12.6 | 112       |
| 108 | Mild and General Conditions for Negishi Crossâ€Coupling Enabled by the Use of Palladacycle<br>Precatalysts. Angewandte Chemie - International Edition, 2013, 52, 615-619.                             | 13.8 | 111       |

| #   | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence. Journal of the American Chemical Society, 2019, 141, 3901-3909.                                                                                      | 13.7 | 111       |
| 110 | Mild Palladium-Catalyzed Cyanation of (Hetero)aryl Halides and Triflates in Aqueous Media. Organic<br>Letters, 2015, 17, 202-205.                                                                                                                            | 4.6  | 110       |
| 111 | A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination. Nature Chemistry, 2016, 8, 144-150.                                                                                                  | 13.6 | 109       |
| 112 | Palladiumâ€Mediated Arylation of Lysine in Unprotected Peptides. Angewandte Chemie - International<br>Edition, 2017, 56, 3177-3181.                                                                                                                          | 13.8 | 109       |
| 113 | A Regio- and Enantioselective CuH-Catalyzed Ketone Allylation with Terminal Allenes. Journal of the<br>American Chemical Society, 2018, 140, 2007-2011.                                                                                                      | 13.7 | 109       |
| 114 | Copper-Catalyzed Enantioselective Addition of Styrene-Derived Nucleophiles to Imines Enabled by<br>Ligand-Controlled Chemoselective Hydrocupration. Journal of the American Chemical Society, 2016,<br>138, 9787-9790.                                       | 13.7 | 108       |
| 115 | Improved Functional Group Compatibility in the Palladium-Catalyzed Synthesis of Aryl Amines. Organic<br>Letters, 2002, 4, 2885-2888.                                                                                                                         | 4.6  | 105       |
| 116 | One-Pot Synthesis of Unsymmetrical Triarylamines from Aniline Precursors. Journal of Organic Chemistry, 2000, 65, 5327-5333.                                                                                                                                 | 3.2  | 104       |
| 117 | Asymmetric Catalysis Special Feature Part II: Copper-catalyzed asymmetric conjugate reduction as a route to novel Â-azaheterocyclic acid derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5821-5823. | 7.1  | 104       |
| 118 | Packedâ€Bed Reactors for Continuousâ€Flow CN Crossâ€Coupling. Angewandte Chemie - International<br>Edition, 2010, 49, 9469-9474.                                                                                                                            | 13.8 | 102       |
| 119 | Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of CuH-Catalyzed<br>Hydroamination Reactions. Journal of the American Chemical Society, 2018, 140, 13976-13984.                                                           | 13.7 | 101       |
| 120 | Sequential N-Arylation of Primary Amines as a Route To Alkyldiarylamines. Journal of Organic<br>Chemistry, 1999, 64, 6019-6022.                                                                                                                              | 3.2  | 100       |
| 121 | Continuousâ€Flow Synthesis of Biaryls Enabled by Multistep Solidâ€Handling in a<br>Lithiation/Borylation/Suzuki–Miyaura Crossâ€Coupling Sequence. Angewandte Chemie - International<br>Edition, 2011, 50, 10665-10669.                                       | 13.8 | 100       |
| 122 | A Bulky Biaryl Phosphine Ligand Allows for Palladium atalyzed Amidation of Fiveâ€Membered<br>Heterocycles as Electrophiles. Angewandte Chemie - International Edition, 2012, 51, 4710-4713.                                                                  | 13.8 | 100       |
| 123 | A Dual Palladium and Copper Hydride Catalyzed Approach for Alkyl–Aryl Crossâ€Coupling of Aryl<br>Halides and Olefins. Angewandte Chemie - International Edition, 2017, 56, 7242-7246.                                                                        | 13.8 | 100       |
| 124 | A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl<br>Triflates and Bromides. Journal of the American Chemical Society, 2015, 137, 13433-13438.                                                              | 13.7 | 98        |
| 125 | Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation. Chemical Science, 2017, 8, 4257-4263.                                                                                                                               | 7.4  | 98        |
| 126 | Completely N <sup>1</sup> -Selective Palladium-Catalyzed Arylation of Unsymmetric Imidazoles:<br>Application to the Synthesis of Nilotinib. Journal of the American Chemical Society, 2012, 134, 700-706.                                                    | 13.7 | 97        |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Room Temperature Catalytic Amination of Aryl Iodides. Journal of Organic Chemistry, 1997, 62, 6066-6068.                                                                                                                                  | 3.2  | 96        |
| 128 | Enantioselective CuH-Catalyzed Reductive Coupling of Aryl Alkenes and Activated Carboxylic Acids.<br>Journal of the American Chemical Society, 2016, 138, 5821-5824.                                                                      | 13.7 | 96        |
| 129 | Regiodivergent and Diastereoselective CuHâ€Catalyzed Allylation of Imines with Terminal Allenes.<br>Angewandte Chemie - International Edition, 2016, 55, 14077-14080.                                                                     | 13.8 | 95        |
| 130 | Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct. Journal of the American<br>Chemical Society, 2019, 141, 2251-2256.                                                                                              | 13.7 | 95        |
| 131 | Electronic Effects on the Selectivity of Pd atalyzed CN Bondâ€Forming Reactions Using<br>Biarylphosphine Ligands: The Competitive Roles of Amine Binding and Acidity. Angewandte Chemie -<br>International Edition, 2007, 46, 7232-7235. | 13.8 | 93        |
| 132 | Palladium Oxidative Addition Complexes for Peptide and Protein Cross-linking. Journal of the American Chemical Society, 2018, 140, 3128-3133.                                                                                             | 13.7 | 93        |
| 133 | Halide and Amine Influence in the Equilibrium Formation of Palladium Tris(o-tolyl)phosphine<br>Mono(amine) Complexes from Palladium Aryl Halide Dimers. Organometallics, 1996, 15, 2755-2763.                                             | 2.3  | 92        |
| 134 | Mild and General Palladium-Catalyzed Synthesis of Methyl Aryl Ethers Enabled by the Use of a<br>Palladacycle Precatalyst. Organic Letters, 2013, 15, 3998-4001.                                                                           | 4.6  | 91        |
| 135 | Continuous-Flow Synthesis of Monoarylated Acetaldehydes Using Aryldiazonium Salts. Journal of the<br>American Chemical Society, 2012, 134, 12466-12469.                                                                                   | 13.7 | 90        |
| 136 | Enantioselective CuH-Catalyzed Hydroallylation of Vinylarenes. Journal of the American Chemical Society, 2016, 138, 5024-5027.                                                                                                            | 13.7 | 87        |
| 137 | Biaryl Phosphine Based Pd(II) Amido Complexes: The Effect of Ligand Structure on Reductive<br>Elimination. Journal of the American Chemical Society, 2016, 138, 12486-12493.                                                              | 13.7 | 87        |
| 138 | Palladium-Catalyzed C–O Cross-Coupling of Primary Alcohols. Organic Letters, 2018, 20, 1580-1583.                                                                                                                                         | 4.6  | 87        |
| 139 | Design of New Ligands for the Palladiumâ€Catalyzed Arylation of αâ€Branched Secondary Amines.<br>Angewandte Chemie - International Edition, 2015, 54, 8259-8262.                                                                          | 13.8 | 83        |
| 140 | Enantioselective CuH-Catalyzed Hydroacylation Employing Unsaturated Carboxylic Acids as Aldehyde<br>Surrogates. Journal of the American Chemical Society, 2017, 139, 8126-8129.                                                           | 13.7 | 82        |
| 141 | New Insights into Xantphos/Pd-Catalyzed Câ^'N Bond Forming Reactions:Â A Structural and Kinetic Study.<br>Organometallics, 2006, 25, 82-91.                                                                                               | 2.3  | 80        |
| 142 | Investigating the Dearomative Rearrangement of Biaryl Phosphine-Ligated Pd(II) Complexes. Journal of the American Chemical Society, 2012, 134, 19922-19934.                                                                               | 13.7 | 80        |
| 143 | Copper Hydride Catalyzed Enantioselective Synthesis of Axially Chiral 1,3-Disubstituted Allenes.<br>Journal of the American Chemical Society, 2019, 141, 13788-13794.                                                                     | 13.7 | 79        |
| 144 | Evidence for the Formation and Structure of Palladacycles during Pd-Catalyzed CN Bond Formation<br>with Catalysts Derived from Bulky Monophosphinobiaryl Ligands. Angewandte Chemie - International<br>Edition, 2006, 45, 925-928.       | 13.8 | 78        |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | An Improved System for the Aqueous Lipshutz–Negishi Crossâ€Coupling of Alkyl Halides with Aryl<br>Electrophiles. Angewandte Chemie - International Edition, 2016, 55, 1849-1853.                                | 13.8 | 77        |
| 146 | CuH-Catalyzed Regioselective Intramolecular Hydroamination for the Synthesis of Alkyl-Substituted Chiral Aziridines. Journal of the American Chemical Society, 2017, 139, 8428-8431.                            | 13.7 | 77        |
| 147 | The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C–N<br>Cross-Coupling. Journal of the American Chemical Society, 2020, 142, 4500-4507.                          | 13.7 | 77        |
| 148 | Water-Soluble Palladium Reagents for Cysteine <i>S</i> -Arylation under Ambient Aqueous Conditions.<br>Organic Letters, 2017, 19, 4263-4266.                                                                    | 4.6  | 76        |
| 149 | A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nature Chemistry, 2019, 11, 78-85.                                                        | 13.6 | 75        |
| 150 | Synthesis of Solid 2-Pyridylzinc Reagents and Their Application in Negishi Reactions. Organic Letters, 2013, 15, 5754-5757.                                                                                     | 4.6  | 74        |
| 151 | Synthesis and Solution Structure of Palladium Tris(o-tolyl)phosphine Mono(amine) Complexes.<br>Organometallics, 1996, 15, 2745-2754.                                                                            | 2.3  | 73        |
| 152 | One-Pot Synthesis of Enantiomerically Enriched 2,3-Disubstituted Cyclopentanones via<br>Copper-Catalyzed 1,4-Reduction and Alkylation. Organic Letters, 2001, 3, 1129-1131.                                     | 4.6  | 73        |
| 153 | CuH atalyzed Asymmetric Hydroamidation of Vinylarenes. Angewandte Chemie - International Edition, 2018, 57, 6672-6675.                                                                                          | 13.8 | 73        |
| 154 | Dosage delivery of sensitive reagents enables glove-box-free synthesis. Nature, 2015, 524, 208-211.                                                                                                             | 27.8 | 72        |
| 155 | Formation of Palladium Bis(amine) Complexes from Reaction of Amine with Palladium<br>Tris(o-tolyl)phosphine Mono(amine) Complexes. Organometallics, 1996, 15, 3534-3542.                                        | 2.3  | 71        |
| 156 | Molecular Design of Deep Blue Thermally Activated Delayed Fluorescence Materials Employing a<br>Homoconjugative Triptycene Scaffold and Dihedral Angle Tuning. Chemistry of Materials, 2018, 30,<br>1462-1466.  | 6.7  | 71        |
| 157 | A Practical Electrophilic Nitrogen Source for the Synthesis of Chiral Primary Amines by<br>Copper-Catalyzed Hydroamination. Journal of the American Chemical Society, 2018, 140, 15976-15984.                   | 13.7 | 71        |
| 158 | Virtually Instantaneous, Room-Temperature [ <sup>11</sup> C]-Cyanation Using Biaryl Phosphine Pd(0)<br>Complexes. Journal of the American Chemical Society, 2015, 137, 648-651.                                 | 13.7 | 68        |
| 159 | An Umpolung Approach for the Chemoselective Arylation of Selenocysteine in Unprotected Peptides.<br>Journal of the American Chemical Society, 2015, 137, 9784-9787.                                             | 13.7 | 65        |
| 160 | Direct <sup>11</sup> CN-Labeling of Unprotected Peptides via Palladium-Mediated Sequential<br>Cross-Coupling Reactions. Journal of the American Chemical Society, 2017, 139, 7152-7155.                         | 13.7 | 65        |
| 161 | Engaging Aldehydes in CuHâ€Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with<br>Unactivated 1,3â€Diene Pronucleophiles. Angewandte Chemie - International Edition, 2019, 58, 17074-17080. | 13.8 | 65        |
| 162 | Palladium-Catalyzed Hydroxylation of Aryl and Heteroaryl Halides Enabled by the Use of a Palladacycle<br>Precatalyst. Journal of Organic Chemistry, 2014, 79, 5351-5358.                                        | 3.2  | 63        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | A Modified System for the Synthesis of Enantioenriched <i>N</i> â€Arylamines through Copperâ€Catalyzed<br>Hydroamination. Angewandte Chemie - International Edition, 2018, 57, 8714-8718.                              | 13.8 | 63        |
| 164 | Pd-Catalyzed C–N Coupling Reactions Facilitated by Organic Bases: Mechanistic Investigation Leads to Enhanced Reactivity in the Arylation of Weakly Binding Amines. ACS Catalysis, 2019, 9, 3822-3830.                 | 11.2 | 63        |
| 165 | Monocyclopentadienyltitanium Aryloxide Complexes:Â Preparation, Characterization, and Application in Cyclization Reactions. Organometallics, 2002, 21, 739-748.                                                        | 2.3  | 62        |
| 166 | Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky<br>Biarylphosphine Ligands. Organic Letters, 2017, 19, 2853-2856.                                                  | 4.6  | 62        |
| 167 | Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of<br>Primary Amides to Nitriles Using Hydrosilanes. Journal of the American Chemical Society, 2018, 140,<br>1627-1631. | 13.7 | 62        |
| 168 | Development of a Method for the <i>N</i> -Arylation of Amino Acid Esters with Aryl Triflates. Organic<br>Letters, 2016, 18, 4128-4131.                                                                                 | 4.6  | 61        |
| 169 | Visible Light-Mediated (Hetero)aryl Amination Using Ni(II) Salts and Photoredox Catalysis in Flow: A<br>Synthesis of Tetracaine. Journal of Organic Chemistry, 2020, 85, 3234-3244.                                    | 3.2  | 57        |
| 170 | Continuousâ€Flow Synthesis of Biaryls by Negishi Crossâ€Coupling of Fluoro―and<br>Trifluoromethylâ€Substituted (Hetero)arenes. Angewandte Chemie - International Edition, 2016, 55,<br>10463-10467.                    | 13.8 | 56        |
| 171 | Monophosphine Ligands Promote Pd-Catalyzed C–S Cross-Coupling Reactions at Room Temperature with Soluble Bases. ACS Catalysis, 2019, 9, 6461-6466.                                                                     | 11.2 | 55        |
| 172 | Palladium-Catalyzed N-Arylation of 2-Aminothiazoles. Organic Letters, 2012, 14, 1432-1435.                                                                                                                             | 4.6  | 54        |
| 173 | Use of a "Catalytic―Cosolvent, <i>N</i> , <i>N</i> â€Dimethyl Octanamide, Allows the Flow Synthesis of<br>Imatinib with no Solvent Switch. Angewandte Chemie - International Edition, 2016, 55, 2531-2535.             | 13.8 | 52        |
| 174 | A Fungal-Selective Cytochrome bc1 Inhibitor Impairs Virulence and Prevents the Evolution of Drug<br>Resistance. Cell Chemical Biology, 2016, 23, 978-991.                                                              | 5.2  | 52        |
| 175 | Synthesis of Pyrroles through the CuH-Catalyzed Coupling of Enynes and Nitriles. Journal of the American Chemical Society, 2020, 142, 9908-9914.                                                                       | 13.7 | 52        |
| 176 | Preparation of Novel Titanium Complexes Bearingo-Phosphinophenol Ligands. Organometallics, 1996,<br>15, 472-475.                                                                                                       | 2.3  | 51        |
| 177 | Efficient Synthesis ofN-Aryl-Aza-Crown Ethers via Palladium-Catalyzed Amination. Journal of Organic<br>Chemistry, 2000, 65, 8027-8031.                                                                                 | 3.2  | 50        |
| 178 | Use of a Droplet Platform To Optimize Pd-Catalyzed C–N Coupling Reactions Promoted by Organic<br>Bases. Organic Process Research and Development, 2019, 23, 1594-1601.                                                 | 2.7  | 50        |
| 179 | Convenient Two-Step Conversion of Lactones into Cyclic Ethers. Journal of Organic Chemistry, 1998, 63, 2360-2361.                                                                                                      | 3.2  | 48        |
| 180 | Use of precatalysts greatly facilitate palladium-catalyzed alkynylations in batch and continuous-flow conditions. Chemical Science, 2011, 2, 2321.                                                                     | 7.4  | 47        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Mechanistic Insight Leads to a Ligand Which Facilitates the Palladiumâ€Catalyzed Formation of<br>2â€(Hetero)Arylaminooxazoles and 4â€(Hetero)Arylaminothiazoles. Angewandte Chemie - International<br>Edition, 2017, 56, 10569-10572. | 13.8 | 47        |
| 182 | Protein–Protein Cross-Coupling via Palladium–Protein Oxidative Addition Complexes from Cysteine<br>Residues. Journal of the American Chemical Society, 2020, 142, 9124-9129.                                                          | 13.7 | 47        |
| 183 | CuH-Catalyzed Asymmetric Reduction of α,β-Unsaturated Carboxylic Acids to β-Chiral Aldehydes. Journal of the American Chemical Society, 2018, 140, 606-609.                                                                           | 13.7 | 45        |
| 184 | Enantioselective Olefin Hydrocyanation without Cyanide. Journal of the American Chemical Society, 2019, 141, 18668-18672.                                                                                                             | 13.7 | 45        |
| 185 | Catalytic Asymmetric Synthesis of αâ€Arylpyrrolidines and Benzoâ€fused Nitrogen Heterocycles.<br>Angewandte Chemie - International Edition, 2019, 58, 3407-3411.                                                                      | 13.8 | 43        |
| 186 | Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes.<br>ACS Catalysis, 2020, 10, 282-291.                                                                                                 | 11.2 | 43        |
| 187 | In-Depth Assessment of the Palladium-Catalyzed Fluorination of Five-Membered Heteroaryl Bromides.<br>Organometallics, 2015, 34, 4775-4780.                                                                                            | 2.3  | 41        |
| 188 | Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination.<br>Organic Letters, 2019, 21, 4370-4373.                                                                                         | 4.6  | 40        |
| 189 | Arylierungschemie für die Biokonjugation. Angewandte Chemie, 2019, 131, 4860-4892.                                                                                                                                                    | 2.0  | 39        |
| 190 | Development of an Aryl Amination Catalyst with Broad Scope Guided by Consideration of Catalyst<br>Stability. Journal of the American Chemical Society, 2020, 142, 15027-15037.                                                        | 13.7 | 39        |
| 191 | Palladiumâ€Mediated Arylation of Lysine in Unprotected Peptides. Angewandte Chemie, 2017, 129, 3225-3229.                                                                                                                             | 2.0  | 38        |
| 192 | Highly Enantioselective Synthesis of Indazoles with a C3-Quaternary Chiral Center Using CuH<br>Catalysis. Journal of the American Chemical Society, 2020, 142, 10550-10556.                                                           | 13.7 | 38        |
| 193 | CuH-Catalyzed Regio- and Enantioselective Hydrocarboxylation of Allenes: Toward Carboxylic Acids with Acyclic Quaternary Centers. Journal of the American Chemical Society, 2021, 143, 4935-4941.                                     | 13.7 | 38        |
| 194 | Preparation, Crystal Structure Analysis, and Catalytic Application of [(S)-BINAP]Ni(COD) and [(S)-BINAP]NiBr2. Organometallics, 2002, 21, 3833-3836.                                                                                  | 2.3  | 37        |
| 195 | An Improved Procedure for the Resolution of (rac)-Ethylenebis(tetrahydroindenyl)Titanium<br>Derivatives. Journal of Organic Chemistry, 1996, 61, 5650-5651.                                                                           | 3.2  | 36        |
| 196 | A Dual Palladium and Copper Hydride Catalyzed Approach for Alkyl–Aryl Crossâ€Coupling of Aryl<br>Halides and Olefins. Angewandte Chemie, 2017, 129, 7348-7352.                                                                        | 2.0  | 36        |
| 197 | Palladium-Catalyzed Negishi Coupling of α-CF <sub>3</sub> Oxiranyl Zincate: Access to Chiral<br>CF <sub>3</sub> -Substituted Benzylic Tertiary Alcohols. Journal of the American Chemical Society,<br>2017, 139, 11590-11594.         | 13.7 | 36        |
| 198 | Evidence for Simultaneous Dearomatization of Two Aromatic Rings under Mild Conditions in<br>Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine. Journal of the American Chemical<br>Society, 2020, 142, 11252-11269.       | 13.7 | 33        |

| #   | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Rapid Synthesis of Aryl Fluorides in Continuous Flow through the Balz–Schiemann Reaction.<br>Angewandte Chemie - International Edition, 2016, 55, 11907-11911.                                                                                                  | 13.8 | 32        |
| 200 | Confronting the Challenging Asymmetric Carbonyl 1,2-Addition Using Vinyl Heteroarene<br>Pronucleophiles: Ligand-Controlled Regiodivergent Processes through a Dearomatized Allyl–Cu<br>Species. Journal of the American Chemical Society, 2022, 144, 5985-5995. | 13.7 | 32        |
| 201 | Improved Process for the Palladium-Catalyzed C–O Cross-Coupling of Secondary Alcohols. Organic Letters, 2020, 22, 5369-5374.                                                                                                                                    | 4.6  | 31        |
| 202 | Structure and reactivity of [(L·Pd) n ·(1,5-cyclooctadiene)] ( n = 1–2) complexes bearing biaryl phosphine ligands. Inorganica Chimica Acta, 2014, 422, 188-192.                                                                                                | 2.4  | 30        |
| 203 | Regioselective 2-Amination of Polychloropyrimidines. Organic Letters, 2016, 18, 2180-2183.                                                                                                                                                                      | 4.6  | 26        |
| 204 | Palladium atalyzed Nâ€Arylation of Iminodibenzyls and Iminostilbenes with Aryl―and Heteroaryl Halides.<br>Chemistry - A European Journal, 2016, 22, 14186-14189.                                                                                                | 3.3  | 26        |
| 205 | Rhodiumâ€katalysierte Hydroformylierung innerer Alkine zu α,βâ€ungesätigten Aldehyden. Angewandte<br>Chemie, 1995, 107, 1877-1879.                                                                                                                              | 2.0  | 25        |
| 206 | Continuous-Flow Preparation and Use of β-Chloro Enals Using the Vilsmeier Reagent. Organic Process<br>Research and Development, 2012, 16, 1442-1448.                                                                                                            | 2.7  | 25        |
| 207 | Large Increase in External Quantum Efficiency by Dihedral Angle Tuning in a Skyâ€Blue Thermally<br>Activated Delayed Fluorescence Emitter. Advanced Optical Materials, 2019, 7, 1900476.                                                                        | 7.3  | 25        |
| 208 | Palladium atalyzed Fluorination of Cyclic Vinyl Triflates: Effect of TESCF <sub>3</sub> as an Additive.<br>Angewandte Chemie - International Edition, 2016, 55, 15559-15563.                                                                                    | 13.8 | 24        |
| 209 | Enantioselective Hydroalkenylation of Olefins with Enol Sulfonates Enabled by Dual Copper Hydride<br>and Palladium Catalysis. Journal of the American Chemical Society, 2021, 143, 5330-5335.                                                                   | 13.7 | 23        |
| 210 | Asymmetric Synthesis of γ-Amino Alcohols by Copper-Catalyzed Hydroamination. Organic Letters, 2019, 21, 8736-8739.                                                                                                                                              | 4.6  | 21        |
| 211 | Enantioselective Preparation of Arenes with β‣tereogenic Centers: Confronting the 1,1â€Disubstituted<br>Olefin Problem Using CuH/Pd Cooperative Catalysis. Angewandte Chemie - International Edition, 2020,<br>59, 16128-16132.                                 | 13.8 | 21        |
| 212 | Enantioselective Synthesis of βâ€Amino Acid Derivatives Enabled by Ligandâ€Controlled Reversal of<br>Hydrocupration Regiochemistry. Angewandte Chemie - International Edition, 2020, 59, 20841-20845.                                                           | 13.8 | 21        |
| 213 | A Modified System for the Synthesis of Enantioenriched N â€Arylamines through Copperâ€Catalyzed<br>Hydroamination. Angewandte Chemie, 2018, 130, 8850-8854.                                                                                                     | 2.0  | 19        |
| 214 | Regiodivergent and Diastereoselective CuH atalyzed Allylation of Imines with Terminal Allenes.<br>Angewandte Chemie, 2016, 128, 14283-14286.                                                                                                                    | 2.0  | 18        |
| 215 | Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angewandte Chemie -<br>International Edition, 2021, 60, 12109-12115.                                                                                                                       | 13.8 | 18        |
| 216 | Engineering Bioactive Dimeric Transcription Factor Analogs via Palladium Rebound Reagents. Journal of the American Chemical Society, 2021, 143, 11788-11798.                                                                                                    | 13.7 | 18        |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Continuousâ€Flow Synthesis of Biaryls by Negishi Crossâ€Coupling of Fluoro―and<br>Trifluoromethylâ€Substituted (Hetero)arenes. Angewandte Chemie, 2016, 128, 10619-10623.                    | 2.0  | 17        |
| 218 | Use of a "Catalytic―Cosolvent, <i>N</i> , <i>N</i> â€Ðimethyl Octanamide, Allows the Flow Synthesis of<br>Imatinib with no Solvent Switch. Angewandte Chemie, 2016, 128, 2577-2581.          | 2.0  | 17        |
| 219 | An Improved System for the Aqueous Lipshutz–Negishi Crossâ€Coupling of Alkyl Halides with Aryl<br>Electrophiles. Angewandte Chemie, 2016, 128, 1881-1885.                                    | 2.0  | 17        |
| 220 | Palladium–Protein Oxidative Addition Complexes by Amine-Selective Acylation. Journal of the<br>American Chemical Society, 2020, 142, 21237-21242.                                            | 13.7 | 16        |
| 221 | Catalytic Arylhydroxylation of Dehydroalanine in Continuous Flow for Simple Access to Unnatural<br>Amino Acids. Chemistry - A European Journal, 2018, 24, 15215-15218.                       | 3.3  | 15        |
| 222 | CuH atalyzed Asymmetric Hydroamidation of Vinylarenes. Angewandte Chemie, 2018, 130, 6782-6785.                                                                                              | 2.0  | 14        |
| 223 | CuH-Catalyzed Asymmetric Reductive Amidation of α,β-Unsaturated Carboxylic Acids. Organic Letters, 2020, 22, 5666-5670.                                                                      | 4.6  | 14        |
| 224 | Enantioselective C2-Allylation of Benzimidazoles Using 1,3-Diene Pronucleophiles. Organic Letters, 2021, 23, 2153-2157.                                                                      | 4.6  | 14        |
| 225 | Amphiphilic Biaryl Monophosphine Ligands by Regioselective Sulfonation. Organic Letters, 2021, 23, 777-780.                                                                                  | 4.6  | 13        |
| 226 | Copper-Catalyzed Enantioselective Hydroamination of Alkenes. Organic Syntheses, 2018, 95, 80-96.                                                                                             | 1.0  | 12        |
| 227 | Enantioselective Hydrocarbamoylation of Alkenes. Angewandte Chemie - International Edition, 2022, 61, .                                                                                      | 13.8 | 12        |
| 228 | Engaging Aldehydes in CuH atalyzed Reductive Coupling Reactions: Stereoselective Allylation with<br>Unactivated 1,3â€Điene Pronucleophiles. Angewandte Chemie, 2019, 131, 17230-17236.       | 2.0  | 11        |
| 229 | In Praise of Basic Research as a Vehicle to Practical Applications: Palladium atalyzed Coupling to<br>Form Carbonâ€Nitrogen Bonds. Israel Journal of Chemistry, 2020, 60, 177-179.           | 2.3  | 11        |
| 230 | A Dual CuH- and Pd-Catalyzed Stereoselective Synthesis of Highly Substituted 1,3-Dienes. Organic<br>Letters, 2021, 23, 8816-8821.                                                            | 4.6  | 11        |
| 231 | Kinetic resolution and isomerization of 2,5-disubstituted pyrrolines. , 2000, 12, 476-478.                                                                                                   |      | 10        |
| 232 | Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins.<br>Journal of the American Chemical Society, 2022, 144, 7852-7860.                              | 13.7 | 10        |
| 233 | Selective Nâ€Arylation of <i>p</i> â€Aminophenylalanine in Unprotected Peptides with Organometallic<br>Palladium Reagents. Angewandte Chemie - International Edition, 2021, 60, 16928-16931. | 13.8 | 9         |
| 234 | Synthesis of Heteroaryl Sulfonamides from Organozinc Reagents and 2,4,6-Trichlorophenyl<br>Chlorosulfate. Organic Letters, 2015, 17, 3170-3173.                                              | 4.6  | 8         |

| #   | Article                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Catalytic Asymmetric Synthesis of αâ€Arylpyrrolidines and Benzoâ€fused Nitrogen Heterocycles.<br>Angewandte Chemie, 2019, 131, 3445-3449.                                                                                                                                                             | 2.0  | 7         |
| 236 | Palladiumâ€Catalyzed Fluorination of Cyclic Vinyl Triflates: Effect of TESCF <sub>3</sub> as an Additive.<br>Angewandte Chemie, 2016, 128, 15788-15792.                                                                                                                                               | 2.0  | 6         |
| 237 | A Neophyl Palladacycle as an Air- and Thermally Stable Precursor to Oxidative Addition Complexes.<br>Organic Letters, 2021, 23, 7927-7932.                                                                                                                                                            | 4.6  | 6         |
| 238 | Commentary on "A New, Efficient and Recyclable Lanthanum(III) Oxideâ€Catalyzed CN Crossâ€Coupling―<br>by S. Narayana Murthy, B. Madhav, V. Prakash Reddy, and Y.â€V.â€D. Nageswar, <i>Adv. Synth. Catal.</i> 2010<br><i>352</i> , 3241–3245. Advanced Synthesis and Catalysis, 2010, 352, 3119-3120. |      | 4         |
| 239 | Mechanistic Insight Leads to a Ligand Which Facilitates the Palladiumâ€Catalyzed Formation of<br>2â€(Hetero)Arylaminooxazoles and 4â€(Hetero)Arylaminothiazoles. Angewandte Chemie, 2017, 129,<br>10705-10708.                                                                                        | 2.0  | 4         |
| 240 | Enantioselective Preparation of Arenes with βâ€Stereogenic Centers: Confronting the 1,1â€Disubstituted<br>Olefin Problem Using CuH/Pd Cooperative Catalysis. Angewandte Chemie, 2020, 132, 16262-16266.                                                                                               | 2.0  | 4         |
| 241 | Enantioselective Synthesis of βâ€Amino Acid Derivatives Enabled by Ligandâ€Controlled Reversal of<br>Hydrocupration Regiochemistry. Angewandte Chemie, 2020, 132, 21027-21031.                                                                                                                        | 2.0  | 4         |
| 242 | Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angewandte Chemie, 2021, 133, 12216-12222.                                                                                                                                                                                       | 2.0  | 4         |
| 243 | A Ligand Exchange Process for the Diversification of Palladium Oxidative Addition Complexes. Organic<br>Letters, 2021, 23, 6030-6034.                                                                                                                                                                 | 4.6  | 4         |
| 244 | Palladium Mediated Synthesis of Protein–Polyarene Conjugates. Journal of the American Chemical<br>Society, 2022, 144, 11706-11712.                                                                                                                                                                    | 13.7 | 4         |
| 245 | Monoindenyltrichloride Complexes of Titanium(IV), Zirconium(IV), and Hafnium(IV). Inorganic<br>Syntheses, 2007, , 215-221.                                                                                                                                                                            | 0.3  | 3         |
| 246 | Unexpected Formation of Hexasubstituted Arenes through a 2-fold Palladium-Mediated Ligand<br>Arylation. Journal of Organic Chemistry, 2019, 84, 12672-12679.                                                                                                                                          | 3.2  | 3         |
| 247 | Selective Nâ€Arylation of p â€Aminophenylalanine in Unprotected Peptides with Organometallic Palladium<br>Reagents. Angewandte Chemie, 2021, 133, 17065-17068.                                                                                                                                        | 2.0  | 3         |
| 248 | Enantioselective Hydrocarbamoylation of Alkenes. Angewandte Chemie, 0, , .                                                                                                                                                                                                                            | 2.0  | 2         |
| 249 | Synthesis of (MeCN) <sub>2</sub> Pd(CF <sub>3</sub> )OTs, a General Precursor to Palladium(II)<br>Trifluoromethyl Complexes LPd(CF <sub>3</sub> )X. Organometallics, 2019, 38, 3490-3493.                                                                                                             | 2.3  | 1         |
| 250 | Addendum: Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature, 2018, 559, E3-E3.                                                                                                                                                                                    | 27.8 | 0         |
| 251 | Eric Jacobsen @60. Advanced Synthesis and Catalysis, 2020, 362, 287-288.                                                                                                                                                                                                                              | 4.3  | 0         |