Ian R A Mackenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036390/publications.pdf

Version: 2024-02-01

161 34,766 papers citations

74 h-index 156 g-index

171 all docs 171 does citations

171 times ranked 20580 citing authors

#	Article	IF	CITATIONS
1	The spectrum of disease and tau pathology of nodding syndrome in Uganda. Brain, 2023, 146, 954-967.	7.6	8
2	Recent Advances in Frontotemporal Dementia. Canadian Journal of Neurological Sciences, 2023, 50, 485-494.	0.5	2
3	Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain, 2022, 145, 1079-1097.	7.6	30
4	Longâ€standing multiple system atrophyâ€Parkinsonism with limbic and FTLDâ€type αâ€synuclein pathology. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	4
5	The contribution of behavioral features to caregiver burden in FTLD spectrum disorders. Alzheimer's and Dementia, 2022, 18, 1635-1649.	0.8	9
6	Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell, 2022, 185, 1346-1355.e15.	28.9	70
7	Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance. Advances in Experimental Medicine and Biology, 2021, 1281, 201-217.	1.6	26
8	Left-Handed Man with Memory Complaints. , 2021, , 49-53.		O
9	Prodromal neuroinvasion of pathological α-synuclein in brainstem reticular nuclei and white matter lesions in a model of α-synucleinopathy. Brain Communications, 2021, 3, fcab104.	3.3	7
10	Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nature Neuroscience, 2021, 24, 1077-1088.	14.8	54
11	α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response. Acta Neuropathologica Communications, 2021, 9, 105.	5.2	17
12	Recognition memory and divergent cognitive profiles in prodromal genetic frontotemporal dementia. Cortex, 2021, 139, 99-115.	2.4	12
13	Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Reports, 2021, 36, 109581.	6.4	33
14	Aptamer-based enrichment of TDP-43 from human cells and tissues with quantification by HPLC-MS/MS. Journal of Neuroscience Methods, 2021, 363, 109344.	2.5	5
15	FDG-PET in presymptomatic C9orf72 mutation carriers. Neurolmage: Clinical, 2021, 31, 102687.	2.7	16
16	Assessment of executive function declines in presymptomatic and mildly symptomatic familial frontotemporal dementia: NIHâ€EXAMINER as a potential clinical trial endpoint. Alzheimer's and Dementia, 2020, 16, 11-21.	0.8	32
17	Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2020, 16, 37-48.	0.8	38
18	Subcortical TDP-43 pathology patterns validate cortical FTLD-TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases. Acta Neuropathologica, 2020, 139, 83-98.	7.7	37

#	Article	IF	CITATIONS
19	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
20	Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2020, 16, 49-59.	0.8	27
21	TDP-43 pathology in primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 52-58.	1.7	20
22	Antibody against TDP-43 phosphorylated at serine 375 suggests conformational differences of TDP-43 aggregates among FTLD–TDP subtypes. Acta Neuropathologica, 2020, 140, 645-658.	7.7	23
23	Amyloid Beta Immunoreactivity in the Retinal Ganglion Cell Layer of the Alzheimer's Eye. Frontiers in Neuroscience, 2020, 14, 758.	2.8	42
24	Amyloid Deposits in the Retina of the Human Eye are Biomarkers of Two Different Diseases., 2020,,.		0
25	Rates of Brain Atrophy Across Disease Stages in Familial Frontotemporal Dementia Associated With MAPT, GRN, and C9orf72 Pathogenic Variants. JAMA Network Open, 2020, 3, e2022847.	5.9	19
26	Expanding the Phenotype of Frontotemporal Lobar Degeneration With FUS-Positive Pathology (FTLD-FUS). Journal of Neuropathology and Experimental Neurology, 2020, 79, 809-812.	1.7	5
27	Premature termination codon readthrough upregulates progranulin expression and improves lysosomal function in preclinical models of GRN deficiency. Molecular Neurodegeneration, 2020, 15, 21.	10.8	19
28	Neuropathology of primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 47-51.	1.7	8
29	Applying the Alzheimer Disease ATN Diagnostic Framework in Atypical Dementia. Alzheimer Disease and Associated Disorders, 2020, 34, 357-359.	1.3	3
30	A mitochondrial DNA D loop insertion detected almost exclusively in non-replicating tissues with maternal inheritance across three generations. Mitochondrion, 2019, 46, 298-301.	3.4	1
31	LATE to the PART-y. Brain, 2019, 142, e47-e47.	7.6	44
32	The Comprehensive Assessment of Neurodegeneration and Dementia: Canadian Cohort Study. Canadian Journal of Neurological Sciences, 2019, 46, 499-511.	0.5	56
33	Detection and characterization of TDP-43 in human cells and tissues by multiple reaction monitoring mass spectrometry. Clinical Mass Spectrometry, 2019, 14, 66-73.	1.9	7
34	Clinicopathologic correlations in a family with a <i>TBK1</i> mutation presenting as primary progressive aphasia and primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 568-575.	1.7	24
35	Tracking white matter degeneration in asymptomatic and symptomatic MAPT mutation carriers. Neurobiology of Aging, 2019, 83, 54-62.	3.1	14
36	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90

3

#	Article	IF	Citations
37	CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. Journal of Biological Chemistry, 2019, 294, 3744-3759.	3.4	97
38	Grant Report on PREDICT-ADFTD: Multimodal Imaging Prediction of AD/FTD and Differential Diagnosis. Journal of Psychiatry and Brain Science, 2019, 4, .	0.5	3
39	Decreased Prefrontal Activation during Matrix Reasoning in Predementia Progranulin Mutation Carriers. Journal of Alzheimer's Disease, 2018, 62, 583-589.	2.6	5
40	Developmental Delay, Treatment-Resistant Psychosis, and Early-Onset Dementia in a Man With 22q11 Deletion Syndrome and Huntington's Disease. American Journal of Psychiatry, 2018, 175, 400-407.	7.2	9
41	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
42	Prevalence of amyloidâ€Î² pathology in distinct variants of primary progressive aphasia. Annals of Neurology, 2018, 84, 729-740.	5.3	132
43	Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers. Neurolmage: Clinical, 2018, 18, 591-598.	2.7	26
44	Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathologica Communications, 2018, 6, 72.	5.2	87
45	Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathologica Communications, 2018, 6, 54.	5.2	48
46	Development and validation of a novel dementia of Alzheimer's type (DAT) score based on metabolism FDG-PET imaging. NeuroImage: Clinical, 2018, 18, 802-813.	2.7	35
47	Drusen in the Peripheral Retina of the Alzheimer's Eye. Current Alzheimer Research, 2018, 15, 743-750.	1.4	24
48	Fused in Sarcoma Neuropathology in Neurodegenerative Disease. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024299.	6.2	25
49	Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Science Translational Medicine, 2017, 9, .	12.4	147
50	Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathologica, 2017, 134, 79-96.	7.7	83
51	Sex differences in the prevalence of genetic mutations in FTD and ALS. Neurology, 2017, 89, 1633-1642.	1.1	47
52	TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 2017, 95, 808-816.e9.	8.1	493
53	eEF2K inhibition blocks ${\sf A\hat{l}^242}$ neurotoxicity by promoting an NRF2 antioxidant response. Acta Neuropathologica, 2017, 133, 101-119.	7.7	48
54	Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Acta Neuropathologica Communications, 2017, 5, 96.	5.2	38

#	Article	IF	CITATIONS
55	Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells. PLoS ONE, 2017, 12, e0184384.	2.5	32
56	Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. Journal of Neurochemistry, 2016, 138, 54-70.	3.9	252
57	An Unusual Case of Rabies Encephalitis. Canadian Journal of Neurological Sciences, 2016, 43, 852-855.	0.5	3
58	Reduced hn <scp>RNPA</scp> 3 increases <i>C9orf72</i> repeat <scp>RNA</scp> levels and dipeptideâ€repeat protein deposition. EMBO Reports, 2016, 17, 1314-1325.	4.5	39
59	Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell, 2016, 165, 921-935.	28.9	558
60	Two cases of rheumatoid meningitis. Neuropathology, 2016, 36, 93-102.	1.2	43
61	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
62	Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathologica, 2016, 131, 587-604.	7.7	76
63	Jump from Pre-mutation to Pathologic Expansion in C9orf72. American Journal of Human Genetics, 2015, 96, 962-970.	6.2	50
64	Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathologica, 2015, 130, 845-861.	7.7	204
65	Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Molecular Neurodegeneration, 2014, 9, 38.	10.8	63
66	Targeted manipulation of the sortilin–progranulin axis rescues progranulin haploinsufficiency. Human Molecular Genetics, 2014, 23, 1467-1478.	2.9	96
67	Frontotemporal lobar degeneration: current perspectives. Neuropsychiatric Disease and Treatment, 2014, 10, 297.	2.2	95
68	Early Neuropsychological Characteristics of Progranulin Mutation Carriers. Journal of the International Neuropsychological Society, 2014, 20, 694-703.	1.8	21
69	The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathologica, 2014, 127, 347-357.	7.7	164
70	Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability. Acta Neuropathologica, 2014, 127, 451-458.	7.7	67
71	TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathologica, 2014, 127, 397-406.	7.7	133
72	Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiology of Aging, 2014, 35, 2421.e13-2421.e17.	3.1	74

#	Article	IF	Citations
73	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
74	The advantages of frontotemporal degeneration drug development (partÂ2Âof frontotemporal) Tj ETQq0 0 0 rg	gBT <i> </i> Oyerlo	ock 10 Tf 50 7
75	Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimer's and Dementia, 2013, 9, 176-188.	0.8	58
76	Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiology of Aging, 2013, 34, 2235.e11-2235.e13.	3.1	13
77	hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathologica, 2013, 125, 413-423.	7.7	302
78	Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathologica, 2013, 126, 859-879.	7.7	298
79	<i>C9ORF72</i> repeat expansions in cases with previously identified pathogenic mutations. Neurology, 2013, 81, 1332-1341.	1.1	84
80	Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers. Neurology, 2013, 81, 1322-1331.	1.1	60
81	<scp>TMEM</scp> 106B p.T185S regulates <scp>TMEM</scp> 106B protein levels: implications for frontotemporal dementia. Journal of Neurochemistry, 2013, 126, 781-791.	3.9	87
82	Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO Journal, 2012, 31, 4258-4275.	7.8	266
83	Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain, 2012, 135, 709-722.	7.6	201
84	Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature. Journal of Neuropathology and Experimental Neurology, 2012, 71, 362-381.	1.7	1,599
85	Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathologica, 2012, 124, 705-716.	7.7	74
86	Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathologica, 2012, 124, 373-382.	7.7	89
87	Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiology of Aging, 2012, 33, 2950.e5-2950.e7.	3.1	83
88	Advances in understanding the molecular basis of frontotemporal dementia. Nature Reviews Neurology, 2012, 8, 423-434.	10.1	353
89	FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Research, 2012, 1462, 40-43.	2.2	71
90	Synaptic dysfunction in progranulin-deficient mice. Neurobiology of Disease, 2012, 45, 711-722.	4.4	144

#	Article	IF	Citations
91	Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p. Acta Neuropathologica, 2012, 123, 409-417.	7.7	137
92	rs5848 polymorphism and serum progranulin level. Journal of the Neurological Sciences, 2011, 300, 28-32.	0.6	77
93	Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron, 2011, 72, 245-256.	8.1	4,176
94	The spectrum and severity of FUS-immunoreactive inclusions in the frontal and temporal lobes of ten cases of neuronal intermediate filament inclusion disease. Acta Neuropathologica, 2011, 121, 219-228.	7.7	23
95	Distinct pathological subtypes of FTLD-FUS. Acta Neuropathologica, 2011, 121, 207-218.	7.7	139
96	Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation. Acta Neuropathologica, 2011, 122, 87-98.	7.7	153
97	Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathologica, 2011, 122, 137-153.	7.7	375
98	A harmonized classification system for FTLD-TDP pathology. Acta Neuropathologica, 2011, 122, 111-113.	7.7	817
99	Spatial patterns of FUS-immunoreactive neuronal cytoplasmic inclusions (NCI) in neuronal intermediate filament inclusion disease (NIFID). Journal of Neural Transmission, 2011, 118, 1651-1657.	2.8	7
100	Novel Types of Frontotemporal Lobar Degeneration: Beyond Tau and TDP-43. Journal of Molecular Neuroscience, 2011, 45, 402-408.	2.3	33
101	Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration. Archives of Neurology, 2011, 68, 488.	4.5	108
102	FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain, 2011, 134, 2595-2609.	7.6	247
103	Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 196-203.	1.9	170
104	Genome-wide Screen Identifies rs646776 near Sortilin as a Regulator of Progranulin Levels in Human Plasma. American Journal of Human Genetics, 2010, 87, 890-897.	6.2	130
105	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
106	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 120, 33-41.	7.7	222
107	Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. Journal of Neural Transmission, 2010, 117, 227-239.	2.8	48
108	<i>Fus</i> gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle and Nerve, 2010, 42, 170-176.	2,2	101

#	Article	IF	CITATIONS
109	ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO Journal, 2010, 29, 2841-2857.	7.8	717
110	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479
111	FUS″mmunoreactive Intranuclear Inclusions in Neurodegenerative Disease. Brain Pathology, 2010, 20, 589-597.	4.1	84
112	Multiple brain pathologies in dementia are common. European Geriatric Medicine, 2010, 1, 259-265.	2.8	20
113	Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin. Neuron, 2010, 68, 654-667.	8.1	465
114	The molecular basis of frontotemporal dementia. Expert Reviews in Molecular Medicine, 2009, 11, e23.	3.9	69
115	A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain, 2009, 132, 2922-2931.	7.6	628
116	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
117	Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathologica, 2009, 117, 125-136.	7.7	294
118	Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathologica, $2009,118,605-616.$	7.7	237
119	Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene. Acta Neuropathologica, 2009, 118, 719-720.	7.7	56
120	FUS pathology in basophilic inclusion body disease. Acta Neuropathologica, 2009, 118, 617-627.	7.7	222
121	Progranulin: normal function and role in neurodegeneration. Journal of Neurochemistry, 2008, 104, 287-297.	3.9	114
122	TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathologica, 2008, 116, 147-157.	7.7	77
123	Progressive Anomia Revisited: Focal Degeneration Associated with Progranulin Gene Mutation. Neurocase, 2008, 13, 366-377.	0.6	17
124	Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain, 2008, 131, 1282-1293.	7.6	131
125	Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis. PLoS Genetics, 2008, 4, e1000193.	3.5	393
126	Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Human Molecular Genetics, 2008, 17, 3631-3642.	2.9	271

#	Article	IF	Citations
127	The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Current Opinion in Neurology, 2008, 21, 693-700.	3.6	150
128	The Neuropathology of FTD Associated With ALS. Alzheimer Disease and Associated Disorders, 2007, 21, S44-S49.	1.3	55
129	TDP-43 in the Ubiquitin Pathology of Frontotemporal Dementia With VCP Gene Mutations. Journal of Neuropathology and Experimental Neurology, 2007, 66, 152-157.	1.7	295
130	A Reassessment of the Neuropathology of Frontotemporal Dementia Linked to Chromosome 3. Journal of Neuropathology and Experimental Neurology, 2007, 66, 884-891.	1.7	118
131	TDP-43 in Familial and Sporadic Frontotemporal Lobar Degeneration with Ubiquitin Inclusions. American Journal of Pathology, 2007, 171, 227-240.	3.8	446
132	Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of Neuroinflammation, 2007, 4, 7.	7.2	194
133	Pathological TDPâ€43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with <i>SOD1</i> mutations. Annals of Neurology, 2007, 61, 427-434.	5.3	840
134	Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurology, The, 2007, 6, 857-868.	10.2	199
135	Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathologica, 2007, 113, 521-533.	7.7	274
136	The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathologica, 2007, 114, 49-54.	7.7	119
137	Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica, 2007, 114, 5-22.	7.7	978
138	The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics, 2007, 8, 237-248.	1.4	76
139	TDPâ€43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. FASEB Journal, 2007, 21, A25.	0.5	0
140	Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science, 2006, 314, 130-133.	12.6	5,422
141	Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006, 442, 916-919.	27.8	1,816
142	Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathologica, 2006, 112, 551-559.	7.7	80
143	Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathologica, 2006, 112, 539-549.	7.7	298
144	Familial frontotemporal dementia with neuronal intranuclear inclusions is not a polyglutamine expansion disease. BMC Neurology, 2006, 6, 32.	1.8	6

#	Article	IF	CITATIONS
145	Novel Ubiquitin Neuropathology in Frontotemporal Dementia With (i>Valosin-Containing Protein (i>Gene Mutations. Journal of Neuropathology and Experimental Neurology, 2006, 65, 571-581.	1.7	206
146	A family with tau-negative frontotemporal dementia and neuronal intranuclear inclusions linked to chromosome 17. Brain, 2006, 129, 853-867.	7.6	102
147	The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain, 2006, 129, 3081-3090.	7.6	291
148	Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain, 2006, 129, 3124-3126.	7.6	91
149	Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Human Molecular Genetics, 2006, 15, 2988-3001.	2.9	529
150	Ubiquitin Immunohistochemistry Suggests Classic Motor Neuron Disease, Motor Neuron Disease With Dementia, and Frontotemporal Dementia of the Motor Neuron Disease Type Represent a Clinicopathologic Spectrum. Journal of Neuropathology and Experimental Neurology, 2005, 64, 730-739.	1.7	143
151	Neuronal Intranuclear Inclusions Distinguish Familial FTD-MND Type from Sporadic Cases. Dementia and Geriatric Cognitive Disorders, 2004, 17, 333-336.	1.5	22
152	Extrapyramidal features in patients with motor neuron disease and dementia; a clinicopathological correlative study. Acta Neuropathologica, 2004, 107, 336-340.	7.7	23
153	?-Internexin aggregates are abundant in neuronal intermediate filament inclusion disease (NIFID) but rare in other neurodegenerative diseases. Acta Neuropathologica, 2004, 108, 213-23.	7.7	50
154	α-Internexin Is Present in the Pathological Inclusions of Neuronal Intermediate Filament Inclusion Disease. American Journal of Pathology, 2004, 164, 2153-2161.	3.8	116
155	The relationship between extramotor ubiquitin-immunoreactive neuronal inclusions and dementia in motor neuron disease. Acta Neuropathologica, 2003, 105, 98-102.	7.7	47
156	Neuronal intranuclear inclusions distinguish familial FTD-MND type from sporadic cases. Acta Neuropathologica, 2003, 105, 543-548.	7.7	37
157	Central neurocytoma. , 1999, 85, 1606-1610.		122
158	Phenotypic Variability of Gerstmann-Straussler-Scheinker Disease is Associated with Prion Protein Heterogeneity. Journal of Neuropathology and Experimental Neurology, 1998, 57, 979-988.	1.7	182
159	Senile plaques do not progressively accumulate with normal aging. Acta Neuropathologica, 1994, 87, 520-525.	7.7	61
160	A lady with weakness, fasciculations, and failing memory., 0,, 90-97.		0
161	Young man with progressive speech impairment and weakness. , 0, , 105-114.		O