
Alessandro Magli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9035895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NAD+ enhances ribitol and ribose rescue of $\hat{l}\pm$ -dystroglycan functional glycosylation in human FKRP-mutant myotubes. ELife, 2021, 10, .	6.0	9
2	Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Frontiers in Genetics, 2021, 12, 702547.	2.3	18
3	Chromatin accessibility profiling identifies evolutionary conserved loci in activated human satellite cells. Stem Cell Research, 2021, 55, 102496.	0.7	4
4	Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies. Stem Cell Reports, 2021, 16, 2752-2767.	4.8	5
5	Muscle progenitor specification and myogenic differentiation are associated with changes in chromatin topology. Nature Communications, 2020, 11, 6222.	12.8	28
6	Pluripotent stem cell-derived skeletal muscle fibers preferentially express myosin heavy-chain isoforms associated with slow and oxidative muscles. Skeletal Muscle, 2020, 10, 17.	4.2	1
7	Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 21. Skeletal Muscle, 2020, 10, 10.	4.2	12
8	Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nature Communications, 2019, 10, 2316.	12.8	28
9	<i>Sox7</i> Regulates Lineage Decisions in Cardiovascular Progenitor Cells. Stem Cells and Development, 2019, 28, 1089-1103.	2.1	13
10	Measuring sequencer size bias using REcount: a novel method for highly accurate Illumina sequencing-based quantification. Genome Biology, 2019, 20, 85.	8.8	29
11	Time-dependent Pax3-mediated chromatin remodeling and cooperation with Six4 and Tead2 specify the skeletal myogenic lineage in developing mesoderm. PLoS Biology, 2019, 17, e3000153.	5.6	23
12	Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4346-4351.	7.1	35
13	Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. ELife, 2019, 8, .	6.0	45
14	Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials, 2018, 183, 54-66.	11.4	34
15	Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cell Reports, 2017, 9, 12-22.	4.8	60
16	The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science, 2017, 130, 3685-3697.	2.0	41
17	Myogenic progenitor specification from pluripotent stem cells. Seminars in Cell and Developmental Biology, 2017, 72, 87-98.	5.0	28
18	PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors. Cell Reports, 2017, 19, 2867-2877.	6.4	62

Alessandro Magli

#	Article	IF	CITATIONS
19	Pax7 remodels the chromatin landscape in skeletal muscle stem cells. PLoS ONE, 2017, 12, e0176190.	2.5	40
20	Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration. Methods in Molecular Biology, 2016, 1460, 191-208.	0.9	11
21	Efficient Generation of Skeletal Myogenic Progenitors from Human Pluripotent Stem Cells. , 2016, , 277-285.		2
22	Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2. Nature Communications, 2016, 7, 13101.	12.8	18
23	Muscle cell identity requires Pax7-mediated lineage-specific DNA demethylation. BMC Biology, 2016, 14, 30.	3.8	19
24	Pax3 and Tbx5 Specify Whether PDGFRα+ Cells Assume Skeletal or Cardiac Muscle Fate in Differentiating Embryonic Stem Cells. Stem Cells, 2014, 32, 2072-2083.	3.2	18
25	Functional Dissection of Pax3 in Paraxial Mesoderm Development and Myogenesis. Stem Cells, 2013, 31, 59-70.	3.2	23
26	Effect of endoglin overexpression during embryoid body development. Experimental Hematology, 2012, 40, 837-846.	0.4	16
27	Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis. Blood, 2011, 118, 88-97.	1.4	39
28	Proline Isomerase Pin1 Represses Terminal Differentiation and Myocyte Enhancer Factor 2C Function in Skeletal Muscle Cells. Journal of Biological Chemistry, 2010, 285, 34518-34527.	3.4	28
29	Nuclear localization of cationic solid lipid nanoparticles containing Protamine as transfection promoter. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 384-393.	4.3	23
30	Nfix Regulates Fetal-Specific Transcription in Developing Skeletal Muscle. Cell, 2010, 140, 554-566.	28.9	173
31	Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells. Nucleic Acids Research, 2007, 36, 915-928.	14.5	30