Sang-Seok Yeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9035747/publications.pdf Version: 2024-02-01

SANC-SEOK VED

#	Article	lF	CITATIONS
1	Parkinson's Disease Subtyping Using Clinical Features and Biomarkers: Literature Review and Preliminary Study of Subtype Clustering. Diagnostics, 2022, 12, 112.	2.6	12
2	Comparative study of vestibular projection pathway connectivity in cerebellar injury patients and healthy adults. BMC Neuroscience, 2022, 23, 17.	1.9	1
3	Anatomical Location of the Vestibulocerebellar Tract in the Healthy Human Brain: A Diffusion Tensor Imaging Study. Brain Sciences, 2021, 11, 199.	2.3	5
4	Associations Between Injury of the Parieto-Insular Vestibular Cortex and Changes in Motor Function According to the Recovery Process: Use of Diffusion Tensor Imaging. Frontiers in Neurology, 2021, 12, 740711.	2.4	1
5	Injury of the lateral vestibulospinal tract in a patient with the lateral medullary syndrome. Medicine (United States), 2020, 99, e22117.	1.0	2
6	Relations between gait characteristics and subjective visual vertical results in young adults. Journal of Vestibular Research: Equilibrium and Orientation, 2020, 30, 73-79.	2.0	5
7	Three-Dimensional Identification of the Medial Longitudinal Fasciculus in the Human Brain: A Diffusion Tensor Imaging Study. Journal of Clinical Medicine, 2020, 9, 1340.	2.4	5
8	Effects of injuries to descending motor pathways on restoration of gait in patients with pontine hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104857.	1.6	17
9	Associations between Age-Related Changes in the Core Vestibular Projection Pathway and Balance Ability: A Diffusion Tensor Imaging Study. Behavioural Neurology, 2020, 2020, 1-9.	2.1	11
10	Accuracy Verification of Spatio-Temporal and Kinematic Parameters for Gait Using Inertial Measurement Unit System. Sensors, 2020, 20, 1343.	3.8	31
11	Changes in Gait Parameters and Gait Variability in Young Adults during a Cognitive Task While Slope and Flat Walking. Healthcare (Switzerland), 2020, 8, 30.	2.0	4
12	Role of diffusion tensor imaging in analyzing the neural connectivity of the parieto-insular vestibular cortex in pusher syndrome. Medicine (United States), 2020, 99, e19835.	1.0	5
13	The Nigrostriatal Tract between the Substantia Nigra and Striatum in the Human Brain: A Diffusion Tensor Tractography Study. The Journal of Korean Physical Therapy, 2020, 32, 388-390.	0.3	3
14	Lateral Medullary Syndrome Following Injury of Lateral Vestibulospinal Tract: Diffusion Tensor Imaging Study. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105252.	1.6	0
15	Differences in Corticoreticulospinal Tract Injuries According to Whiplash in Mild Traumatic Brain Injury Patients. Frontiers in Neurology, 2019, 10, 1199.	2.4	1
16	Injury of the Precommissural Fornix in a Patient with Subarachnoid Hemorrhage: A Case Report. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, e98-e101.	1.6	7
17	Lateral medullary syndrome following injury of the vestibular pathway to the core vestibular cortex: Diffusion tensor imaging study. Neuroscience Letters, 2018, 665, 147-151.	2.1	9
18	Wheelchair Skills Training for Functional Activity in Adults with Cervical Spinal Cord Injury. International Journal of Sports Medicine, 2018, 39, 924-928.	1.7	3

SANG-SEOK YEO

#	Article	IF	CITATIONS
19	Gait Characteristic in a Stroke Patient with an Intact Corticospinal Tract and Corticoreticular Pathway: A Case Study. The Journal of Korean Physical Therapy, 2018, 30, 73-77.	0.3	1
20	Structural neural connectivity of the vestibular nuclei in the human brain: a diffusion tensor imagingS study. Neural Regeneration Research, 2018, 13, 727.	3.0	8
21	Injury of thalamocortical connection between the mediodorsal nucleus of the thalamus and the orbitofrontal cortex in a patient with traumatic brain injury. Neural Regeneration Research, 2018, 13, 1118.	3.0	3
22	Restoration of an injured lower dorsal ascending reticular activating system in a patient with intraventricular hemorrhage. Neural Regeneration Research, 2018, 13, 2022.	3.0	0
23	Central vestibular disorder due to ischemic injury on the parieto-insular vestibular cortex in patients with middle cerebral artery territory infarction. Medicine (United States), 2017, 96, e9349.	1.0	16
24	Changes of Gait Variability by the Attention Demanding Task in Elderly Adults. The Journal of Korean Physical Therapy, 2017, 29, 303-306.	0.3	7
25	The cortical activation pattern during bilateral arm raising movements. Neural Regeneration Research, 2017, 12, 317.	3.0	5
26	Central post-stroke pain due to injury of the spinothalamic tract in patients with cerebral infarction: a diffusion tensor tractography imaging study. Neural Regeneration Research, 2017, 12, 2021.	3.0	23
27	Differences of Cortical Activation Pattern during the Use of Fork, Wooden Chopsticks and Metallic Chopsticks: A Functional near Infrared Spectroscopy Study. Journal of Near Infrared Spectroscopy, 2016, 24, 399-403.	1.5	0
28	Injury of the lower ascending reticular activating system in patients with pontine hemorrhage. Medicine (United States), 2016, 95, e5527.	1.0	7
29	Diffusion tensor tractography in a patient with memory impairment following encephalitis. Acta Neurologica Belgica, 2016, 116, 629-631.	1.1	7
30	Injury of the Papez circuit in a patient with provoked confabulation following subarachnoid hemorrhage: a diffusion tensor tractography study. Acta Neurologica Belgica, 2016, 116, 655-658.	1.1	12
31	Changes of the corticospinal tract in the unaffected hemisphere in stroke patients: A diffusion tensor imaging study. Somatosensory & Motor Research, 2016, 33, 1-7.	0.9	8
32	Injury of the lower portion of the ascending reticular activating system in a patient with intraventricular hemorrhage. International Journal of Stroke, 2015, 10, 162-163.	5.9	9
33	Difference in Cortical Activation According to the Speed of Passive Movements by a Rehabilitation Robotic Hand. Journal of Near Infrared Spectroscopy, 2015, 23, 67-73.	1.5	4
34	Injury of the ascending reticular activating system by transtentorial herniation in a patient with intracerebral haemorrhage: a diffusion tensor tractography study: FigureÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1164-1166.	1.9	15
35	The different maturation of the corticospinal tract and corticoreticular pathway in normal brain development: diffusion tensor imaging study. Frontiers in Human Neuroscience, 2014, 8, 573.	2.0	48
36	Thalamocortical Connections between the Mediodorsal Nucleus of the Thalamus and Prefrontal Cortex in the Human Brain: A Diffusion Tensor Tractographic Study. Yonsei Medical Journal, 2014, 55, 709.	2.2	39

SANG-SEOK YEO

#	Article	lF	CITATIONS
37	The neural connectivity of the intralaminar thalamic nuclei in the human brain: A diffusion tensor tractography study. Neuroscience Letters, 2014, 579, 140-144.	2.1	61
38	Recovery of an injured corticoreticular pathway via transcallosal fibers in a patient with intracerebral hemorrhage. BMC Neurology, 2014, 14, 108.	1.8	11
39	Cortical activation change induced by neuromuscular electrical stimulation during hand movements: a functional NIRS study. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 29.	4.6	14
40	The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study. Frontiers in Human Neuroscience, 2014, 8, 49.	2.0	39
41	Age-related changes of lateral ventricular width and periventricular white matter in the human brain: a diffusion tensor imaging study. Neural Regeneration Research, 2014, 9, 986.	3.0	13
42	Recovery of an injured corticospinal tract and an injured corticoreticular pathway in a patient with intracerebral hemorrhage. NeuroRehabilitation, 2013, 32, 305-309.	1.3	23
43	Proximal weakness due to injury of the corticoreticular pathway in a patient with traumatic brain injury. NeuroRehabilitation, 2013, 32, 665-669.	1.3	16
44	The cortical activation differences between proximal and distal joint movements of the upper extremities: A functional NIRS study. NeuroRehabilitation, 2013, 32, 861-866.	1.3	19
45	Recovery of an injured fornix in a stroke patient. Journal of Rehabilitation Medicine, 2013, 45, 1078-1080.	1.1	15
46	The Ascending Reticular Activating System from Pontine Reticular Formation to the Thalamus in the Human Brain. Frontiers in Human Neuroscience, 2013, 7, 416.	2.0	120
47	Precommissural Fornix in the Human Brain: A Diffusion Tensor Tractography Study. Yonsei Medical Journal, 2013, 54, 315.	2.2	25
48	Neural reorganization following bilateral injury of the fornix crus in a patient with traumatic brain injury. Journal of Rehabilitation Medicine, 2013, 45, 595-598.	1.1	30
49	Motor recovery via aberrant pyramidal tract in a patient with traumatic brain injury: A diffusion tensor tractography study. Neural Regeneration Research, 2013, 8, 90-4.	3.0	4
50	Changes in a cerebellar peduncle lesion in a patient with Dandy-Walker malformation: A diffusion tensor imaging study. Neural Regeneration Research, 2013, 8, 474-8.	3.0	2
51	Corticospinal tract recovery in a patient with traumatic transtentorial herniation. Neural Regeneration Research, 2013, 8, 469-73.	3.0	4
52	Injury of Fornix in Patients With Intracerebral Hemorrhage. International Journal of Neuroscience, 2012, 122, 195-199.	1.6	8
53	Neural Connectivity of the Pedunculopontine Nucleus in Relation to Walking Ability in Chronic Patients with Intracerebral Hemorrhage. European Neurology, 2012, 67, 226-231.	1.4	5
54	Evidence of Corticospinal Tract Injury at Midbrain in Patients With Subarachnoid Hemorrhage. Stroke, 2012, 43, 2239-2241.	2.0	48

SANG-SEOK YEO

#	Article	IF	CITATIONS
55	Delayed neural degeneration following gamma knife radiosurgery in a patient with an arteriovenous malformation: A diffusion tensor imaging study. NeuroRehabilitation, 2012, 31, 131-135.	1.3	8
56	Differences between the somatotopic corticospinal tract for the fingers and toes in the human brain. NeuroRehabilitation, 2012, 31, 395-399.	1.3	6
57	Corticoreticular pathway in the human brain: Diffusion tensor tractography study. Neuroscience Letters, 2012, 508, 9-12.	2.1	97
58	Ipsilateral motor pathway without contralateral motor pathway in a stroke patient. NeuroRehabilitation, 2012, 30, 303-306.	1.3	10
59	Neural connection between injured cingulum and pedunculopontine nucleus in a patient with traumatic brain injury. NeuroRehabilitation, 2012, 31, 143-146.	1.3	11
60	A change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex in a patient with intracerebral hemorrhage. Neural Regeneration Research, 2012, 7, 939-42.	3.0	5
61	Medullary Decussation of the Lateral Corticospinal Tract. European Neurology, 2011, 66, 296-297.	1.4	2
62	Periventricular White Matter Injury by Primary Intraventricular Hemorrhage: A Diffusion Tensor Imaging Study. European Neurology, 2011, 66, 235-241.	1.4	32
63	Anatomical Location of the Pedunculopontine Nucleus in the Human Brain: Diffusion Tensor Imaging Study. Stereotactic and Functional Neurosurgery, 2011, 89, 152-156.	1.5	10
64	The Effect of Thalamic Hemorrhage on the Fornix. International Journal of Neuroscience, 2011, 121, 379-383.	1.6	4
65	Changes in red nucleus after pyramidal tract injury in patients with cerebral infarct. NeuroRehabilitation, 2010, 27, 373-377.	1.3	33