Luis Villanueva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9035253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered Cortical Trigeminal Fields Excitability by Spreading Depolarization Revealed with <i>in Vivo</i> Functional Ultrasound Imaging Combined with Electrophysiology. Journal of Neuroscience, 2022, 42, 6295-6308.	3.6	3
2	Burst-Like Subcutaneous Electrical Stimulation Induces BDNF-Mediated, Cyclotraxin B-Sensitive Central Sensitization in Rat Spinal Cord. Frontiers in Pharmacology, 2018, 9, 1143.	3.5	9
3	Oral and Craniofacial Pain: Contribution of Endogenous, Central Modulation Mechanisms. , 2017, , 47-61.		0
4	Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infraorbital blood–nerve barrier following chronic constriction injury?. Molecular Pain, 2017, 13, 174480691772762.	2.1	16
5	Early alterations of Hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development. Pain, 2016, 157, 827-839.	4.2	56
6	Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics. Journal of Neurochemistry, 2016, 136, 133-147.	3.9	28
7	In Memoriam Jeanâ€Marie Besson 1938–2014. European Journal of Pain, 2015, 19, 871-876.	2.8	0
8	In Memoriam Jean-Marie Besson 1938 to 2014. Pain, 2015, 156, 2399-2401.	4.2	0
9	Paraventricular Hypothalamic Regulation of Trigeminovascular Mechanisms Involved in Headaches. Journal of Neuroscience, 2013, 33, 8827-8840.	3.6	120
10	Cyclotraxin-B, a New TrkB Antagonist, and Glial Blockade by Propentofylline, Equally Prevent and Reverse Cold Allodynia Induced by BDNF or Partial Infraorbital Nerve Constriction in Mice. Journal of Pain, 2012, 13, 579-589.	1.4	28
11	How Does Migraine Attack Stop?. Headache, 2012, 52, 188-188.	3.9	2
12	Sensory motor cortex, maladaptative changes and impaired orofacial functions. Archives of Oral Biology, 2011, 56, 1437-1439.	1.8	0
13	Repetitive transcranial magnetic stimulation (rTMS) as a tool for the treatment of chronic visceral pain. European Journal of Pain, 2011, 15, 1-2.	2.8	23
14	Changes of Meningeal Excitability Mediated by Corticotrigeminal Networks: A Link for the Endogenous Modulation of Migraine Pain. Journal of Neuroscience, 2010, 30, 14420-14429.	3.6	99
15	Diffuse Noxious Inhibitory Control (DNIC) as a tool for exploring dysfunction of endogenous pain modulatory systems. Pain, 2009, 143, 161-162.	4.2	40
16	Paraventricular oxytocinergic hypothalamic prevention or interruption of long-term potentiation in dorsal horn nociceptive neurons: Electrophysiological and behavioral evidence. Pain, 2009, 144, 320-328.	4.2	67
17	Chapter 8 Ascending nociceptive pathways. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2006, 81, 93-102.	1.8	6
18	Corticofugal Output from the Primary Somatosensory Cortex Selectively Modulates Innocuous and Noxious Inputs in the Rat Spinothalamic System. Journal of Neuroscience, 2006, 26, 8441-8450.	3.6	51

Luis Villanueva

#	Article	IF	CITATIONS
19	The lateral ventromedial thalamic nucleus spreads nociceptive signals from the whole body surface to layer l of the frontal cortex. European Journal of Neuroscience, 2005, 21, 3395-3402.	2.6	33
20	Dendritic domains of nociceptive-responsive parabrachial neurons match terminal fields of lamina I neurons in the rat. Journal of Comparative Neurology, 2003, 464, 238-256.	1.6	20
21	Convergence of cutaneous, muscular and visceral noxious inputs onto ventromedial thalamic neurons in the rat. Pain, 2003, 103, 83-91.	4.2	31
22	Systemic morphine selectively depresses a thalamic link of widespread nociceptive inputs in the rat. European Journal of Pain, 2002, 6, 81-87.	2.8	12
23	Parabrachial Internal Lateral Neurons Convey Nociceptive Messages from the Deep Laminas of the Dorsal Horn to the Intralaminar Thalamus. Journal of Neuroscience, 2001, 21, 2159-2165.	3.6	70
24	Spatial encoding properties of subnucleus reticularis dorsalis neurons in the rat medulla. Brain Research, 2000, 873, 131-134.	2.2	15
25	Is there a gap between preclinical and clinical studies of analgesia?. Trends in Pharmacological Sciences, 2000, 21, 461-462.	8.7	18
26	Ventromedial Thalamic Neurons Convey Nociceptive Signals from the Whole Body Surface to the Dorsolateral Neocortex. Journal of Neuroscience, 1999, 19, 9063-9072.	3.6	65
27	Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: A PHA-L study in the rat. , 1999, 405, 421-449.		106
28	Organization of cortical projections to the medullary subnucleus reticularis dorsalis: A retrograde and anterograde tracing study in the rat. Journal of Comparative Neurology, 1999, 410, 178-196.	1.6	57
29	Organization of cortical projections to the medullary subnucleus reticularis dorsalis: A retrograde and anterograde tracing study in the rat. Journal of Comparative Neurology, 1999, 410, 178-196.	1.6	1
30	Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: A retrograde and anterograde tracer study in the rat. Journal of Comparative Neurology, 1998, 390, 133-160.	1.6	70
31	Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: A retrograde and anterograde tracer study in the rat. Journal of Comparative Neurology, 1998, 390, 133-160.	1.6	2
32	The Multiplicity of Ascending Pain Pathways. , 1998, , .		2
33	Organization of efferent projections from the spinal cervical enlargement to the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: A PHA-L study in the rat. , 1996, 367, 503-517.		35
34	Distribution of spinal cord projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: Aphaseolus vulgaris- leucoagglutinin study in the rat. Journal of Comparative Neurology, 1995, 352, 11-32.	1.6	57
35	Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal graye. A PHA-L study in the rat. Journal of Comparative Neurology, 1995, 353, 480-505.	1.6	174
36	Involvement of bulbospinal pathways in the antinociceptive effect of clomipramine in the rat. Brain Research, 1995, 695, 253-256.	2.2	42

Luis Villanueva

#	Article	IF	CITATIONS
37	Computer-assisted reconstruction of axonal arborizations anterogradely labelled with the Phaseolus vulgaris leucoagglutinin technique. Journal of Neuroscience Methods, 1993, 50, 217-224.	2.5	26
38	Morphine and diffuse noxious inhibitory controls in the rat: effects of lesions of the rostral ventromedial medulla. European Journal of Pharmacology, 1993, 232, 207-215.	3.5	33
39	Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat. Brain Research, 1992, 595, 353-357.	2.2	174
40	Effects of systematic morphine on diffuse noxious inhibitory controls: Role of the periaqueductal grey. European Journal of Pharmacology, 1992, 216, 149-156.	3.5	47
41	Diffuse Noxious Inhibitory Controls (DNIC) in Animals and in Man. Acupuncture in Medicine, 1991, 9, 47-56.	1.0	72
42	Effects of systemic morphine upon Aδ- and C-fibre evoked activities of subnucleus reticularis dorsalis neurones in the rat medulla. European Journal of Pharmacology, 1989, 164, 85-92.	3.5	27
43	Intracerebroventricular morphine restores the basic somesthetic activity of dorsal horn convergent neurones in the rat. European Journal of Pharmacology, 1988, 148, 273-277.	3.5	14
44	Effects of tizanidine (DS 103–282) on dorsal horn convergent neurones in the rat. Pain, 1988, 35, 187-197.	4.2	20
45	Chapter 20 Electrophysiological evidence for the activation of descending inhibitory controls by nociceptive afferent pathways. Progress in Brain Research, 1988, 77, 275-299.	1.4	66
46	Dorsal horn (convergent) neurones in the intact anaesthetized arthritic rat. I. Segmental excitatory influences. Pain, 1987, 28, 81-98.	4.2	69
47	Dorsal horn (convergent) neurones in the intact anaesthetized arthritic rat. II. Heterotopic inhibitory influences. Pain, 1987, 31, 359-379.	4.2	38
48	Differential metabolic activity in the brain during deep halothane anesthesia. A qualitative study using [3H]deoxyglucose. Neuroscience Letters, 1986, 71, 1-6.	2.1	9
49	Indirect effects of intrathecal morphine upon diffuse noxious inhibitory controls (DNICs) in the rat. Pain, 1986, 26, 233-243.	4.2	24
50	Lesions of dorsolateral funiculi (DLF) do not affect the depressive effects of systemic morphine upon dorsal horn convergent neuronal activities related to pain in the rat. Brain Research, 1986, 377, 397-402.	2.2	4
51	Aspects of Sensory Processing through Convergent Neurons. , 1986, , 467-504.		29
52	Failure of ES 52, a highly potent enkephalinase inhibitor, to affect nociceptive transmission by rat dorsal horn convergent neurones. Brain Research, 1985, 333, 156-160.	2.2	8
53	Evidence that diffuse noxious inhibitory controls (DNIC) are mediated by a final post-synaptic inhibitory mechanism. Brain Research, 1984, 298, 67-74.	2.2	40
54	Depression of activities of dorsal horn convergent neurones by propriospinal mechanisms triggered by noxious inputs; comparison with diffuse noxious inhibitory controls (DNIC). Brain Research, 1983, 275, 1-11.	2.2	115