
Masanori Matsuzaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9035020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silent microscopy to explore a brain that hears butterflies' wings. Light: Science and Applications, 2022, 11, 140.	16.6	0
2	Tb ³⁺ -doped fluorescent glass for biology. Science Advances, 2021, 7, .	10.3	9
3	Neuronal representations of reward-predicting cues and outcome history with movement in the frontal cortex. Cell Reports, 2021, 34, 108704.	6.4	15
4	A small-scale robotic manipulandum for motor control study with rodents. Advanced Robotics, 2021, 35, 898-906.	1.8	0
5	Optical deep-cortex exploration in behaving rhesus macaques. Nature Communications, 2021, 12, 4656.	12.8	2
6	Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia, 2020, 68, 193-210.	4.9	55
7	Non-action Learning: Saving Action-Associated Cost Serves as a Covert Reward. Frontiers in Behavioral Neuroscience, 2020, 14, 141.	2.0	2
8	Common marmoset as a model primate for study of the motor control system. Current Opinion in Neurobiology, 2020, 64, 103-110.	4.2	8
9	Structural dynamics and stability of corticocortical and thalamocortical axon terminals during motor learning. PLoS ONE, 2020, 15, e0234930.	2.5	17
10	Two-photon Calcium Imaging of Axons Reveals Thalamocortical Neuronal Dynamics during Motor Learning. The Brain & Neural Networks, 2020, 27, 35-43.	0.1	0
11	Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22844-22850.	7.1	40
12	Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. ELife, 2019, 8,	6.0	40
13	Silencing of FUS in the common marmoset (Callithrix jacchus) brain via stereotaxic injection of an adeno-associated virus encoding shRNA. Neuroscience Research, 2018, 130, 56-64.	1.9	14
14	Super-wide-field two-photon imaging with a micro-optical device moving in post-objective space. Nature Communications, 2018, 9, 3550.	12.8	44
15	Thalamocortical Axonal Activity in Motor Cortex Exhibits Layer-Specific Dynamics during Motor Learning. Neuron, 2018, 100, 244-258.e12.	8.1	63
16	Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks. Nature Communications, 2018, 9, 1879.	12.8	66
17	In vivo wide-field calcium imaging of mouse thalamocortical synapses with an 8 K ultra-high-definition camera. Scientific Reports, 2018, 8, 8324.	3.3	20
18	Two-photon calcium imaging of the medial prefrontal cortex and hippocampus without cortical invasion. ELife, 2017, 6, .	6.0	63

Masanori Matsuzaki

#	Article	IF	CITATIONS
19	Neuronal processing of noxious thermal stimuli mediated by dendritic Ca2+ influx in Drosophila somatosensory neurons. ELife, 2016, 5, .	6.0	39
20	Long-Term Two-Photon Calcium Imaging of Neuronal Populations with Subcellular Resolution in Adult Non-human Primates. Cell Reports, 2015, 13, 1989-1999.	6.4	124
21	Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex. Journal of Neuroscience, 2015, 35, 13311-13322.	3.6	63
22	Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning. Nature Communications, 2014, 5, 5551.	12.8	25
23	Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task. Nature Neuroscience, 2014, 17, 987-994.	14.8	139
24	GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nature Neuroscience, 2013, 16, 1409-1416.	14.8	183
25	Spatiotemporal Dynamics of Functional Clusters of Neurons in the Mouse Motor Cortex during a Voluntary Movement. Journal of Neuroscience, 2013, 33, 1377-1390.	3.6	86
26	In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas. Frontiers in Neural Circuits, 2013, 7, 55.	2.8	57
27	Next-generation transgenic mice for optogenetic analysis of neural circuits. Frontiers in Neural Circuits, 2013, 7, 160.	2.8	62
28	Two-Photon Imaging and Photomanipulation of Multicellular Neural Activity in Awake Behaving Animals. The Review of Laser Engineering, 2013, 41, 86.	0.0	0
29	Reinforcing operandum: rapid and reliable learning of skilled forelimb movements by head-fixed rodents. Journal of Neurophysiology, 2012, 108, 1781-1792.	1.8	48
30	Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain. Molecular and Cellular Neurosciences, 2011, 48, 246-257.	2.2	39
31	<i>In vivo</i> twoâ€photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice. Journal of Physiology, 2011, 589, 2447-2457.	2.9	157
32	Two-Photon Uncaging Microscopy. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5620.	0.3	16
33	Simultaneous two-photon activation of presynaptic cells and calcium imaging in postsynaptic dendritic spines. Neural Systems & Circuits, 2011, 1, 2.	1.8	7
34	Spatial Distributions of GABA Receptors and Local Inhibition of Ca2+ Transients Studied with GABA Uncaging in the Dendrites of CA1 Pyramidal Neurons. PLoS ONE, 2011, 6, e22652.	2.5	32
35	1-Acyl-5-methoxy-8-nitro-1,2-dihydroquinoline: a biologically useful photolabile precursor of carboxylic acids. Tetrahedron Letters, 2010, 51, 1642-1647.	1.4	12
36	Two-color, two-photon uncaging of glutamate and GABA. Nature Methods, 2010, 7, 123-125.	19.0	125

#	Article	IF	CITATIONS
37	Two-photon uncaging of γ-aminobutyric acid in intact brain tissue. Nature Chemical Biology, 2010, 6, 255-257.	8.0	97
38	Transcranial optogenetic stimulation for functional mapping of the motor cortex. Journal of Neuroscience Methods, 2009, 179, 258-263.	2.5	97
39	Protein Synthesis and Neurotrophin-Dependent Structural Plasticity of Single Dendritic Spines. Science, 2008, 319, 1683-1687.	12.6	560
40	The Subspine Organization of Actin Fibers Regulates the Structure and Plasticity of Dendritic Spines. Neuron, 2008, 57, 719-729.	8.1	448
41	Principles of Long-Term Dynamics of Dendritic Spines. Journal of Neuroscience, 2008, 28, 13592-13608.	3.6	284
42	Three-Dimensional Mapping of Unitary Synaptic Connections by Two-Photon Macro Photolysis of Caged Glutamate. Journal of Neurophysiology, 2008, 99, 1535-1544.	1.8	58
43	High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8143-8148.	7.1	347
44	4-Carboxymethoxy-5,7-Dinitroindolinyl-Glu: An Improved Caged Glutamate for Expeditious Ultraviolet and Two-Photon Photolysis in Brain Slices. Journal of Neuroscience, 2007, 27, 6601-6604.	3.6	94
45	Factors critical for the plasticity of dendritic spines and memory storage. Neuroscience Research, 2007, 57, 1-9.	1.9	94
46	Number and Density of AMPA Receptors in Single Synapses in Immature Cerebellum. Journal of Neuroscience, 2005, 25, 799-807.	3.6	150
47	Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites. Neuron, 2005, 46, 609-622.	8.1	370
48	Genetically Encoded Bright Ca2+ Probe Applicable for Dynamic Ca2+ Imaging of Dendritic Spines. Analytical Chemistry, 2005, 77, 5861-5869.	6.5	119
49	Propagation of γPKC translocation along the dendrites of Purkinje cell in γPKC-GFP transgenic mice. Genes To Cells, 2004, 9, 945-957.	1.2	19
50	Structural basis of long-term potentiation in single dendritic spines. Nature, 2004, 429, 761-766.	27.8	2,081
51	Structure–stability–function relationships of dendritic spines. Trends in Neurosciences, 2003, 26, 360-368.	8.6	762
52	Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neuroscience, 2001, 4, 1086-1092.	14.8	1,413