Eric Batchelor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9034138/publications.pdf Version: 2024-02-01

FRIC RATCHELOR

#	Article	IF	CITATIONS
1	Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. American Journal of Physiology - Cell Physiology, 2022, 322, C1123-C1137.	4.6	5
2	Progress and challenges in understanding the regulation and function of p53 dynamics. Biochemical Society Transactions, 2021, 49, 2123-2131.	3.4	4
3	FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Communications Biology, 2020, 3, 545.	4.4	8
4	Rucaparib Treatment Alters p53 Oscillations in Single Cells to Enhance DNA-Double-Strand-Break-Induced Cell Cycle Arrest. Cell Reports, 2020, 33, 108240.	6.4	3
5	Dissecting transcriptional amplification by MYC. ELife, 2020, 9, .	6.0	41
6	Tuning of mRNA stability through altering 3′-UTR sequences generates distinct output expression in a synthetic circuit driven by p53 oscillations. Scientific Reports, 2019, 9, 5976.	3.3	20
7	Protein stability of p53 targets determines their temporal expression dynamics in response to p53 pulsing. Journal of Cell Biology, 2019, 218, 1282-1297.	5.2	20
8	p53 pulse modulation differentially regulates target gene promoters to regulate cell fate decisions. Molecular Systems Biology, 2019, 15, e8685.	7.2	29
9	Recent progress and open challenges in modeling p53 dynamics in single cells. Current Opinion in Systems Biology, 2017, 3, 54-59.	2.6	20
10	Determining the Limitations and Benefits of Noise in Gene Regulation and Signal Transduction through Single Cell, Microscopy-Based Analysis. Journal of Molecular Biology, 2017, 429, 1143-1154.	4.2	13
11	NFκB Promotes Ovarian Tumorigenesis via Classical Pathways That Support Proliferative Cancer Cells and Alternative Pathways That Support ALDH+ Cancer Stem–like Cells. Cancer Research, 2017, 77, 6927-6940.	0.9	77
12	CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level. Nucleic Acids Research, 2017, 45, 12039-12053.	14.5	64
13	Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response. Molecular Cell, 2017, 67, 1013-1025.e9.	9.7	55
14	Single-cell Gene Expression Profiling Using FACS and qPCR with Internal Standards. Journal of Visualized Experiments, 2017, , .	0.3	5
15	Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. Molecular Cell, 2017, 67, 566-578.e10.	9.7	174
16	Flexible CRISPR library construction using parallel oligonucleotide retrieval. Nucleic Acids Research, 2017, 45, e101-e101.	14.5	11
17	Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget, 2017, 8, 14860-14875.	1.8	30
18	p53 Pulses Diversify Target Gene Expression Dynamics in an mRNA Half-Life-Dependent Manner and Delineate Co-regulated Target Gene Subnetworks. Cell Systems, 2016, 2, 272-282.	6.2	68

ERIC BATCHELOR

#	Article	IF	CITATIONS
19	Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels. American Journal of Pathology, 2016, 186, 701-715.	3.8	32
20	Using Computational Modeling and Experimental Synthetic Perturbations to Probe Biological Circuits. Methods in Molecular Biology, 2015, 1244, 259-276.	0.9	4
21	Promoter decoding of transcription factor dynamics. Molecular Systems Biology, 2013, 9, 703.	7.2	1
22	p53 Dynamics Control Cell Fate. Science, 2012, 336, 1440-1444.	12.6	655
23	Suppressing variation in synthetic circuits. Molecular Systems Biology, 2011, 7, 520.	7.2	1
24	Stimulusâ€dependent dynamics of p53 in single cells. Molecular Systems Biology, 2011, 7, 488.	7.2	283
25	Fourier analysis and systems identification of the p53 feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13550-13555.	7.1	85
26	Basal Dynamics of p53 Reveal Transcriptionally Attenuated Pulses in Cycling Cells. Cell, 2010, 142, 89-100.	28.9	223
27	A synthetic–natural hybrid oscillator in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17047-17052.	7.1	54
28	The ups and downs of p53: understanding protein dynamics in single cells. Nature Reviews Cancer, 2009, 9, 371-377.	28.4	208
29	Recurrent Initiation: A Mechanism for Triggering p53 Pulses in Response to DNA Damage. Molecular Cell, 2008, 30, 277-289.	9.7	383
30	Imaging OmpR localization in Escherichia coli. Molecular Microbiology, 2006, 59, 1767-1778.	2.5	40
31	The <i>Escherichia coli</i> CpxA-CpxR Envelope Stress Response System Regulates Expression of the Porins OmpF and OmpC. Journal of Bacteriology, 2005, 187, 5723-5731.	2.2	151
32	Continuous Control in Bacterial Regulatory Circuits. Journal of Bacteriology, 2004, 186, 7618-7625.	2.2	39
33	Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 691-696.	7.1	220

3