Francesco Spinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of fruit microbiome to raspberry volatile organic compounds emission. Postharvest Biology and Technology, 2022, 183, 111742.	6.0	12
2	Taxonomical and functional composition of strawberry microbiome is genotype-dependent. Journal of Advanced Research, 2022, 42, 189-204.	9.5	12
3	Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits. Microbiological Research, 2022, 260, 127048.	5.3	6
4	Treated wastewater as irrigation source: a microbiological and chemical evaluation in apple and nectarine trees. Agricultural Water Management, 2021, 244, 106403.	5.6	17
5	A Breach in Plant Defences: Pseudomonas syringae pv. actinidiae Targets Ethylene Signalling to Overcome Actinidia chinensis Pathogen Responses. International Journal of Molecular Sciences, 2021, 22, 4375.	4.1	12
6	Does Organic Farming Increase Raspberry Quality, Aroma and Beneficial Bacterial Biodiversity?. Microorganisms, 2021, 9, 1617.	3.6	16
7	Halyomorpha halys (Hemiptera: Pentatomidae) on Kiwifruit in Northern Italy: Phenology, Infestation, and Natural Enemies Assessment. Journal of Economic Entomology, 2021, 114, 1733-1742.	1.8	9
8	Bacterial volatile compound-based tools for crop management and quality. Trends in Plant Science, 2021, 26, 968-983.	8.8	38
9	Osmoprotectants and Antioxidative Enzymes as Screening Tools for Salinity Tolerance in Radish (Raphanus sativus). Horticultural Plant Journal, 2020, 6, 14-24.	5.0	18
10	Nectarine volatilome response to fresh-cutting and storage. Postharvest Biology and Technology, 2020, 159, 111020.	6.0	13
11	N-Acyl Homoserine Lactones and Lux Solos Regulate Social Behaviour and Virulence of Pseudomonas syringae pv. actinidiae. Microbial Ecology, 2020, 79, 383-396.	2.8	22
12	Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. Microbial Ecology, 2020, 80, 81-102.	2.8	67
13	Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean. Agronomy, 2020, 10, 1002.	3.0	50
14	Foliar application of specific yeast derivative enhances anthocyanins accumulation and gene expression in Sangiovese cv (Vitis vinifera L.). Scientific Reports, 2020, 10, 11627.	3.3	6
15	Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Scientia Horticulturae, 2020, 272, 109508.	3.6	103
16	Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. Agronomy, 2020, 10, 794.	3.0	77
17	Pathogens Associated to Kiwifruit Vine Decline in Italy. Agriculture (Switzerland), 2020, 10, 119.	3.1	25
18	Influence of cultural practices on the incidence and severity of kiwifruit bacterial canker. Acta	0.2	4

Horticulturae, 2019, , 59-64.

#	Article	IF	CITATIONS
19	Validation of New Zealand Psa forecasting model in Emilia Romagna Region, Italy. Acta Horticulturae, 2019, , 71-78.	0.2	2
20	Effect of plant extracts on <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> gene expression, motility and virulence. Acta Horticulturae, 2019, , 79-84.	0.2	0
21	Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Scientific Reports, 2019, 9, 14127.	3.3	113
22	Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit. Agronomy, 2019, 9, 10.	3.0	30
23	Genetic and functional characterization of the bacterial community on fruit of three raspberry (Rubus idaeus) cultivars. Journal of Berry Research, 2019, 9, 227-247.	1.4	11
24	Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in Plant Science, 2019, 10, 305.	3.6	154
25	Biological control of bacterial plant diseases with <i>Lactobacillus plantarum</i> strains selected for their broadâ€spectrum activity. Annals of Applied Biology, 2019, 174, 92-105.	2.5	92
26	Pathogen-induced changes in floral scent may increase honeybee-mediated dispersal of <i>Erwinia amylovora</i> . ISME Journal, 2019, 13, 847-859.	9.8	45
27	Quorum sensing in <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa). Acta Horticulturae, 2019, , 85-90.	0.2	1
28	Biological effect of VOCs produced during <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> infection of kiwifruit plant. Acta Horticulturae, 2019, , 7-14.	0.2	0
29	Fruit of three kiwifruit (Actinidia chinensis) cultivars differ in their degreening response to temperature after harvest. Postharvest Biology and Technology, 2018, 141, 16-23.	6.0	18
30	Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and <i>Erwinia amylovora</i> . Molecular Plant Pathology, 2018, 19, 158-168.	4.2	42
31	First Report of <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> on Kiwifruit Pollen from Argentina. Plant Disease, 2018, 102, 237-237.	1.4	12
32	Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. Plant Journal, 2018, 93, 270-285.	5.7	76
33	Screening of microbial biocoenosis of <i>Actinidia chinensis</i> for the isolation of candidate biological control agents against <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Acta Horticulturae, 2018, , 239-246.	0.2	4
34	Insect-mediated vectoring of Pseudomonas syringae pv. actinidiae. Acta Horticulturae, 2018, , 269-274.	0.2	0
35	Molecular signalling inPseudomonas syringaepv.actinidiae. Acta Horticulturae, 2018, , 299-306.	0.2	0
36	<i>Actinidia</i> - <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> interaction: differentially expressed plant transcripts during infection. Acta Horticulturae, 2018, , 315-320.	0.2	0

#	Article	IF	CITATIONS
37	Transcriptome analysis of the <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa) pathogenesis process. Acta Horticulturae, 2018, , 321-326.	0.2	0
38	Modification of the phyllosphere bacterial biocoenosis by Pseudomonas syringae pv. actinidiae infection. Acta Horticulturae, 2018, , 275-278.	0.2	2
39	Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Horticulture Research, 2018, 5, 56.	6.3	54
40	Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants. Frontiers in Plant Science, 2018, 9, 1563.	3.6	51
41	Insecticidal Activity of Photorhabdus luminescens against Drosophila suzukii. Insects, 2018, 9, 148.	2.2	26
42	Is the physiological maturity at harvest influencing nectarine flavour after cold storage?. Acta Horticulturae, 2018, , 1429-1434.	0.2	0
43	Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics, 2018, 19, 585.	2.8	33
44	Soil CO 2 emission partitioning, bacterial community profile and gene expression of Nitrosomonas spp. and Nitrobacter spp. of a sandy soil amended with biochar and compost. Applied Soil Ecology, 2017, 112, 79-89.	4.3	21
45	ABA regulation of calcium-related genes and bitter pit in apple. Postharvest Biology and Technology, 2017, 132, 1-6.	6.0	30
46	Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis. Sensors, 2017, 17, 2596.	3.8	76
47	Use of Nondestructive Devices to Support Pre- and Postharvest Fruit Management. Horticulturae, 2017, 3, 12.	2.8	9
48	Role of Metcalfa pruinosa as a Vector for Pseudomonas syringae pv. actinidiae. Plant Pathology Journal, 2017, 33, 554-560.	1.7	19
49	Greenhouse assays on the control ofÂtheÂbacterial canker of kiwifruit (Pseudomonas syringae pv.) Tj ETQq1 1 ().784314 i 1.4	rgBT_/Overlack
50	Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit. Journal of Berry Research, 2016, 6, 355-371.	1.4	18
51	Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Annals of Applied Biology, 2016, 168, 409-420.	2.5	43
52	Salinity thresholds and genotypic variability of cabbage (<i>Brassica oleracea</i> L.) grown under saline stress. Journal of the Science of Food and Agriculture, 2016, 96, 319-330.	3.5	32
53	Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences. Trees - Structure and Function, 2016, 30, 795-806.	1.9	23
54	DAFL: NEW INNOVATIVE DEVICE TO MONITOR FRUIT RIPENING IN STORAGE. Acta Horticulturae, 2015, , 549-554.	0.2	3

#	Article	IF	CITATIONS
55	INNOVATIVE NON-DESTRUCTIVE DEVICE FOR FRUIT QUALITY ASSESSMENT AND EARLY DISEASE DIAGNOSIS. Acta Horticulturae, 2015, , 69-78.	0.2	12
56	RNA-SEQ ANALYSIS OF THE MOLECULAR INTERACTION BETWEEN PSEUDOMONAS SYRINGAE PV. ACTINIDIAE (PSA) AND THE KIWIFRUIT. Acta Horticulturae, 2015, , 357-362.	0.2	0
57	SURVIVAL OF PSEUDOMONAS SYRINGAE PV. ACTINIDIAE IN THE ENVIRONMENT. Acta Horticulturae, 2015, , 105-110.	0.2	4
58	UNRAVELING THE MOLECULAR INTERACTION BETWEEN PSEUDOMONAS SYRINGAE PV. ACTINIDIAE (PSA) AND THE KIWIFRUIT PLANT THROUGH RNASEQ APPROACH. Acta Horticulturae, 2015, , 89-94.	0.2	2
59	Use of the index of absorbance difference (IAD) as a tool for tailoring post-harvest 1-MCP application to control apple superficial scald. Scientia Horticulturae, 2015, 190, 110-116.	3.6	29
60	Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF–MS. Metabolomics, 2015, 11, 341-349.	3.0	36
61	New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Journal of Berry Research, 2014, 4, 53-67.	1.4	78
62	Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta, 2014, 129, 422-430.	5.5	61
63	Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by <i>Pseudomonas syringae</i> pv. <i>actinidae</i> . Annals of Applied Biology, 2014, 165, 441-453.	2.5	69
64	Identification of Volatile Markers in Potato Brown Rot and Ring Rot by Combined GC-MS and PTR-MS Techniques: Study on in Vitro and in Vivo Samples. Journal of Agricultural and Food Chemistry, 2014, 62, 337-347.	5.2	28
65	Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. Frontiers in Plant Science, 2013, 4, 24.	3.6	36
66	Assessment of <i>in vitro</i> removal of cholesterol oxidation products by <i>Lactobacillus casei </i> ATCC334. Letters in Applied Microbiology, 2013, 57, 443-450.	2.2	6
67	Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees - Structure and Function, 2012, 26, 141-152.	1.9	28
68	Acylcyclohexanediones and biological control agents: combining complementary modes of action to control fire blight. Trees - Structure and Function, 2012, 26, 247-257.	1.9	4
69	EMISSION OF VOLATILES DURING THE PATHOGENIC INTERACTION BETWEEN ERWINIA AMYLOVORA AND MALUS DOMESTICA. Acta Horticulturae, 2011, , 55-63.	0.2	7
70	VOLATILE COMPOUNDS PRODUCED BY ERWINIA AMYLOVORA AND THEIR POTENTIAL EXPLOITATION FOR BACTERIAL IDENTIFICATION. Acta Horticulturae, 2011, , 77-84.	0.2	5
71	REAL TIME MONITORING OF THE INTERACTIONS BETWEEN PSEUDOMONAS SYRINGAE PV. ACTINIDIAE AND ACTINIDIA SPECIES. Acta Horticulturae, 2011, , 461-465.	0.2	47
72	RECENT ADVANCES IN THE CHARACTERISATION AND CONTROL OF PSEUDOMONAS SYRINGAE PV. ACTINIDIAE, THE CAUSAL AGENT OF BACTERIAL CANKER ON KIWIFRUIT. Acta Horticulturae, 2011, , 443-455.	0.2	31

#	Article	IF	CITATIONS
73	USE OF PLANT BIOREGULATORS IN KIWIFRUIT PRODUCTION. Acta Horticulturae, 2011, , 337-344.	0.2	1
74	Reduction of scab incidence (Venturia inaequalis) in apple with prohexadione-Ca and trinexapac-ethyl, two growth regulating acylcyclohexanediones. Crop Protection, 2010, 29, 691-698.	2.1	8
75	Potential of the electronicâ€nose for the diagnosis of bacterial and fungal diseases in fruit trees. EPPO Bulletin, 2010, 40, 59-67.	0.8	21
76	A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Scientia Horticulturae, 2010, 125, 263-269.	3.6	116
77	Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. Journal of Horticultural Science and Biotechnology, 2009, 84, 131-137.	1.9	74
78	INNOVATIVE APPLICATION OF NON-DESTRUCTIVE TECHNIQUES FOR FRUIT QUALITY AND DISEASE DIAGNOSIS. Acta Horticulturae, 2007, , 275-282.	0.2	12
79	Potential and limits of acylcyclohexanediones for the control of blossom blight in apple and pear caused by Erwinia amylovora. Plant Pathology, 2007, 56, 702-710.	2.4	10
80	GROWTH-REGULATING ACYLCYCLOHEXANEDIONES, TRINEXAPAC-ETHYL AND PROHEXADIONE-CALCIUM DECREASE BLOSSOM BLIGHT INCIDENCE IN POME FRUITS. Acta Horticulturae, 2006, , 245-248.	0.2	2
81	PROHEXADIONE-CA: MORE THAN A GROWTH REGULATOR FOR POME FRUIT TREES. Acta Horticulturae, 2006, , 107-116.	0.2	9
82	NEAR INFRARED SPECTROSCOPY (NIRS): PERSPECTIVE OF FIRE BLIGHT DETECTION IN ASYMPTOMATIC PLANT MATERIAL. Acta Horticulturae, 2006, , 87-90.	0.2	33
83	CHEMICAL CONTROL OF FIRE BLIGHT IN PEAR: APPLICATION OF PROHEXADIONE-CALCIUM, ACIBENZOLAR-S-METHYL, AND COPPER PREPARATIONS IN VITRO AND UNDER FIELD CONDITIONS. Acta Horticulturae, 2006, , 233-238.	0.2	10
84	PROHEXADIONE-CA: MODES OF ACTION OF A MULTIFUNCTIONAL PLANT BIOREGULATOR FOR FRUIT TREES. Acta Horticulturae, 2006, , 97-106.	0.2	37
85	Induction of polyphenol gene expression in apple (Malus x domestica) after the application of a dioxygenase inhibitor. Physiologia Plantarum, 2006, 128, 604-617.	5.2	28
86	PROHEXADIONE-CALCIUM INDUCES IN APPLE THE BIOSYNTHESIS OF LUTEOFOROL, A NOVEL FLAVAN 4-OL, WHICH IS ACTIVE AGAINST ERWINIA AMYLOVORA. Acta Horticulturae, 2006, , 239-244.	0.2	2
87	ESTABLISHMENT AND SURVIVAL ON APPLE AND PEAR LEAVES OF FOUR BIOLOGICAL CONTROL AGENTS INCLUDING PANTOEA AGGLOMERANS P10C AND PSEUDOMONAS FLUORESCENS A506. Acta Horticulturae, 2006, , 307-312.	0.2	4
88	Luteoforol, a flavan 4-ol, is induced in pome fruits by prohexadione-calciumand shows phytoalexin-like properties against Erwinia amylovoraand other plant pathogens. European Journal of Plant Pathology, 2005, 112, 133-142.	1.7	51
89	Influence of Stigmatic Morphology on Flower Colonization by ErwiniaÂamylovora and PantoeaÂagglomerans. European Journal of Plant Pathology, 2005, 113, 395-405.	1.7	48
90	INCIDENCE OF SCAB (VENTURIA INAEQUALIS) IN APPLE AS AFFECTED BY DIFFERENT PLANT GROWTH RETARDANTS. Acta Horticulturae, 2004, , 133-137.	0.2	8

#	Article	IF	CITATIONS
91	TWO YEARS OF APPLICATION OF PROHEXADIONE-CA ON APPLE: EFFECT ON VEGETATIVE AND CROPPING PERFORMANCE, FRUIT QUALITY, RETURN BLOOM AND RESIDUAL EFFECT. Acta Horticulturae, 2004, , 35-40.	0.2	16
92	PROHEXADIONE-CA CONTROLS VEGETATIVE GROWTH AND CROPPING PERFORMANCE IN PEAR. Acta Horticulturae, 2004, , 127-132.	0.2	11
93	Induction of Antimicrobial 3-Deoxyflavonoids in Pome Fruit Trees Controls Fire Blight. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 765-770.	1.4	36
94	Emission and Function of Volatile Organic Compounds in Response to Abiotic Stress. , 0, , .		22
95	Colonisation of apple and pear leaves by different strains of biological control agents of fire blight. New Zealand Plant Protection, 0, 57, 49-53.	0.3	4
96	Effect of prohexadionecalcium on nectar composition of pomaceous flowers and on bacterial growth. New Zealand Plant Protection, 0, 58, 106-111.	0.3	0