Francesco Spinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033916/publications.pdf

Version: 2024-02-01

159585 2,612 96 30 citations h-index papers

g-index 97 97 97 2343 docs citations times ranked citing authors all docs

223800

46

#	Article	IF	CITATIONS
1	Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in Plant Science, 2019, 10, 305.	3.6	154
2	A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Scientia Horticulturae, 2010, 125, 263-269.	3.6	116
3	Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Scientific Reports, 2019, 9, 14127.	3 . 3	113
4	Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Scientia Horticulturae, 2020, 272, 109508.	3.6	103
5	Biological control of bacterial plant diseases with <i>Lactobacillus plantarum</i> strains selected for their broadâ€spectrum activity. Annals of Applied Biology, 2019, 174, 92-105.	2.5	92
6	New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Journal of Berry Research, 2014, 4, 53-67.	1.4	78
7	Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. Agronomy, 2020, 10, 794.	3.0	77
8	Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis. Sensors, 2017, 17, 2596.	3.8	76
9	Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. Plant Journal, 2018, 93, 270-285.	5 . 7	76
10	Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. Journal of Horticultural Science and Biotechnology, 2009, 84, 131-137.	1.9	74
11	Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by <i>Pseudomonas syringae</i> pv. <i>actinidae</i> Annals of Applied Biology, 2014, 165, 441-453.	2.5	69
12	Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. Microbial Ecology, 2020, 80, 81-102.	2.8	67
13	Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta, 2014, 129, 422-430.	5.5	61
14	Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Horticulture Research, 2018, 5, 56.	6.3	54
15	Luteoforol, a flavan 4-ol, is induced in pome fruits by prohexadione-calciumand shows phytoalexin-like properties against Erwinia amylovoraand other plant pathogens. European Journal of Plant Pathology, 2005, 112, 133-142.	1.7	51
16	Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants. Frontiers in Plant Science, 2018, 9, 1563.	3.6	51
17	Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean. Agronomy, 2020, 10, 1002.	3.0	50
18	Influence of Stigmatic Morphology on Flower Colonization by ErwiniaÂamylovora and PantoeaÂagglomerans. European Journal of Plant Pathology, 2005, 113, 395-405.	1.7	48

#	Article	IF	Citations
19	REAL TIME MONITORING OF THE INTERACTIONS BETWEEN PSEUDOMONAS SYRINGAE PV. ACTINIDIAE AND ACTINIDIA SPECIES. Acta Horticulturae, 2011, , 461-465.	0.2	47
20	Pathogen-induced changes in floral scent may increase honeybee-mediated dispersal of <i>Erwinia amylovora</i> . ISME Journal, 2019, 13, 847-859.	9.8	45
21	Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Annals of Applied Biology, 2016, 168, 409-420.	2.5	43
22	Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and <i>Erwinia amylovora</i> . Molecular Plant Pathology, 2018, 19, 158-168.	4.2	42
23	Bacterial volatile compound-based tools for crop management and quality. Trends in Plant Science, 2021, 26, 968-983.	8.8	38
24	PROHEXADIONE-CA: MODES OF ACTION OF A MULTIFUNCTIONAL PLANT BIOREGULATOR FOR FRUIT TREES. Acta Horticulturae, 2006, , 97-106.	0.2	37
25	Induction of Antimicrobial 3-Deoxyflavonoids in Pome Fruit Trees Controls Fire Blight. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 765-770.	1.4	36
26	Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. Frontiers in Plant Science, 2013, 4, 24.	3.6	36
27	Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF–MS. Metabolomics, 2015, 11, 341-349.	3.0	36
28	NEAR INFRARED SPECTROSCOPY (NIRS): PERSPECTIVE OF FIRE BLIGHT DETECTION IN ASYMPTOMATIC PLANT MATERIAL. Acta Horticulturae, 2006, , 87-90.	0.2	33
29	Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics, 2018, 19, 585.	2.8	33
30	Salinity thresholds and genotypic variability of cabbage (<i>Brassica oleracea</i> L.) grown under saline stress. Journal of the Science of Food and Agriculture, 2016, 96, 319-330.	3.5	32
31	RECENT ADVANCES IN THE CHARACTERISATION AND CONTROL OF PSEUDOMONAS SYRINGAE PV. ACTINIDIAE, THE CAUSAL AGENT OF BACTERIAL CANKER ON KIWIFRUIT. Acta Horticulturae, 2011, , 443-455.	0.2	31
32	ABA regulation of calcium-related genes and bitter pit in apple. Postharvest Biology and Technology, 2017, 132, 1-6.	6.0	30
33	Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit. Agronomy, 2019, 9, 10.	3.0	30
34	Use of the index of absorbance difference (IAD) as a tool for tailoring post-harvest 1-MCP application to control apple superficial scald. Scientia Horticulturae, 2015, 190, 110-116.	3.6	29
35	Induction of polyphenol gene expression in apple (Malus x domestica) after the application of a dioxygenase inhibitor. Physiologia Plantarum, 2006, 128, 604-617.	5.2	28
36	Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees - Structure and Function, 2012, 26, 141-152.	1.9	28

#	Article	IF	CITATIONS
37	Identification of Volatile Markers in Potato Brown Rot and Ring Rot by Combined GC-MS and PTR-MS Techniques: Study on in Vitro and in Vivo Samples. Journal of Agricultural and Food Chemistry, 2014, 62, 337-347.	5.2	28
38	Insecticidal Activity of Photorhabdus luminescens against Drosophila suzukii. Insects, 2018, 9, 148.	2.2	26
39	Pathogens Associated to Kiwifruit Vine Decline in Italy. Agriculture (Switzerland), 2020, 10, 119.	3.1	25
40	Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences. Trees - Structure and Function, 2016, 30, 795-806.	1.9	23
41	Emission and Function of Volatile Organic Compounds in Response to Abiotic Stress., 0,,.		22
42	N-Acyl Homoserine Lactones and Lux Solos Regulate Social Behaviour and Virulence of Pseudomonas syringae pv. actinidiae. Microbial Ecology, 2020, 79, 383-396.	2.8	22
43	Potential of the electronicâ€nose for the diagnosis of bacterial and fungal diseases in fruit trees. EPPO Bulletin, 2010, 40, 59-67.	0.8	21
44	Soil CO 2 emission partitioning, bacterial community profile and gene expression of Nitrosomonas spp. and Nitrobacter spp. of a sandy soil amended with biochar and compost. Applied Soil Ecology, 2017, 112, 79-89.	4.3	21
45	Greenhouse assays on the control ofÂtheÂbacterial canker of kiwifruit (Pseudomonas syringae pv.) Tj ETQq1 1 0.	784314 rş 1.4	gBT _g /Overlac
46	Role of Metcalfa pruinosa as a Vector for Pseudomonas syringae pv. actinidiae. Plant Pathology Journal, 2017, 33, 554-560.	1.7	19
47	Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit. Journal of Berry Research, 2016, 6, 355-371.	1.4	18
48	Fruit of three kiwifruit (Actinidia chinensis) cultivars differ in their degreening response to temperature after harvest. Postharvest Biology and Technology, 2018, 141, 16-23.	6.0	18
49	Osmoprotectants and Antioxidative Enzymes as Screening Tools for Salinity Tolerance in Radish (Raphanus sativus). Horticultural Plant Journal, 2020, 6, 14-24.	5.0	18
50	Treated wastewater as irrigation source: a microbiological and chemical evaluation in apple and nectarine trees. Agricultural Water Management, 2021, 244, 106403.	5.6	17
51	TWO YEARS OF APPLICATION OF PROHEXADIONE-CA ON APPLE: EFFECT ON VEGETATIVE AND CROPPING PERFORMANCE, FRUIT QUALITY, RETURN BLOOM AND RESIDUAL EFFECT. Acta Horticulturae, 2004, , 35-40.	0.2	16
52	Does Organic Farming Increase Raspberry Quality, Aroma and Beneficial Bacterial Biodiversity?. Microorganisms, 2021, 9, 1617.	3.6	16
53	Nectarine volatilome response to fresh-cutting and storage. Postharvest Biology and Technology, 2020, 159, 111020.	6.0	13
54	INNOVATIVE APPLICATION OF NON-DESTRUCTIVE TECHNIQUES FOR FRUIT QUALITY AND DISEASE DIAGNOSIS. Acta Horticulturae, 2007, , 275-282.	0.2	12

#	Article	IF	CITATIONS
55	INNOVATIVE NON-DESTRUCTIVE DEVICE FOR FRUIT QUALITY ASSESSMENT AND EARLY DISEASE DIAGNOSIS. Acta Horticulturae, 2015, , 69-78.	0.2	12
56	First Report of <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> on Kiwifruit Pollen from Argentina. Plant Disease, 2018, 102, 237-237.	1.4	12
57	A Breach in Plant Defences: Pseudomonas syringae pv. actinidiae Targets Ethylene Signalling to Overcome Actinidia chinensis Pathogen Responses. International Journal of Molecular Sciences, 2021, 22, 4375.	4.1	12
58	Contribution of fruit microbiome to raspberry volatile organic compounds emission. Postharvest Biology and Technology, 2022, 183, 111742.	6.0	12
59	Taxonomical and functional composition of strawberry microbiome is genotype-dependent. Journal of Advanced Research, 2022, 42, 189-204.	9.5	12
60	Genetic and functional characterization of the bacterial community on fruit of three raspberry (Rubus idaeus) cultivars. Journal of Berry Research, 2019, 9, 227-247.	1.4	11
61	PROHEXADIONE-CA CONTROLS VEGETATIVE GROWTH AND CROPPING PERFORMANCE IN PEAR. Acta Horticulturae, 2004, , 127-132.	0.2	11
62	CHEMICAL CONTROL OF FIRE BLIGHT IN PEAR: APPLICATION OF PROHEXADIONE-CALCIUM, ACIBENZOLAR-S-METHYL, AND COPPER PREPARATIONS IN VITRO AND UNDER FIELD CONDITIONS. Acta Horticulturae, 2006, , 233-238.	0.2	10
63	Potential and limits of acylcyclohexanediones for the control of blossom blight in apple and pear caused by Erwinia amylovora. Plant Pathology, 2007, 56, 702-710.	2.4	10
64	PROHEXADIONE-CA: MORE THAN A GROWTH REGULATOR FOR POME FRUIT TREES. Acta Horticulturae, 2006, , 107-116.	0.2	9
65	Use of Nondestructive Devices to Support Pre- and Postharvest Fruit Management. Horticulturae, 2017, 3, 12.	2.8	9
66	Halyomorpha halys (Hemiptera: Pentatomidae) on Kiwifruit in Northern Italy: Phenology, Infestation, and Natural Enemies Assessment. Journal of Economic Entomology, 2021, 114, 1733-1742.	1.8	9
67	INCIDENCE OF SCAB (VENTURIA INAEQUALIS) IN APPLE AS AFFECTED BY DIFFERENT PLANT GROWTH RETARDANTS. Acta Horticulturae, 2004, , 133-137.	0.2	8
68	Reduction of scab incidence (Venturia inaequalis) in apple with prohexadione-Ca and trinexapac-ethyl, two growth regulating acylcyclohexanediones. Crop Protection, 2010, 29, 691-698.	2.1	8
69	EMISSION OF VOLATILES DURING THE PATHOGENIC INTERACTION BETWEEN ERWINIA AMYLOVORA AND MALUS DOMESTICA. Acta Horticulturae, $2011, 55-63$.	0.2	7
70	Assessment of <i>in vitro</i> removal of cholesterol oxidation products by <i>Lactobacillus casei </i> ATCC334. Letters in Applied Microbiology, 2013, 57, 443-450.	2.2	6
71	Foliar application of specific yeast derivative enhances anthocyanins accumulation and gene expression in Sangiovese cv (Vitis vinifera L.). Scientific Reports, 2020, 10, 11627.	3.3	6
72	Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits. Microbiological Research, 2022, 260, 127048.	5.3	6

#	Article	lF	Citations
7 3	VOLATILE COMPOUNDS PRODUCED BY ERWINIA AMYLOVORA AND THEIR POTENTIAL EXPLOITATION FOR BACTERIAL IDENTIFICATION. Acta Horticulturae, 2011, , 77-84.	0.2	5
74	Acylcyclohexanediones and biological control agents: combining complementary modes of action to control fire blight. Trees - Structure and Function, 2012, 26, 247-257.	1.9	4
7 5	SURVIVAL OF PSEUDOMONAS SYRINGAE PV. ACTINIDIAE IN THE ENVIRONMENT. Acta Horticulturae, 2015, , 105-110.	0.2	4
76	Screening of microbial biocoenosis of <i>Actinidia chinensis</i> for the isolation of candidate biological control agents against <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Acta Horticulturae, 2018, , 239-246.	0.2	4
77	Influence of cultural practices on the incidence and severity of kiwifruit bacterial canker. Acta Horticulturae, 2019, , 59-64.	0.2	4
78	ESTABLISHMENT AND SURVIVAL ON APPLE AND PEAR LEAVES OF FOUR BIOLOGICAL CONTROL AGENTS INCLUDING PANTOEA AGGLOMERANS P10C AND PSEUDOMONAS FLUORESCENS A506. Acta Horticulturae, 2006, , 307-312.	0.2	4
79	Colonisation of apple and pear leaves by different strains of biological control agents of fire blight. New Zealand Plant Protection, 0, 57, 49-53.	0.3	4
80	DAFL: NEW INNOVATIVE DEVICE TO MONITOR FRUIT RIPENING IN STORAGE. Acta Horticulturae, 2015, , 549-554.	0.2	3
81	GROWTH-REGULATING ACYLCYCLOHEXANEDIONES, TRINEXAPAC-ETHYL AND PROHEXADIONE-CALCIUM DECREASE BLOSSOM BLIGHT INCIDENCE IN POME FRUITS. Acta Horticulturae, 2006, , 245-248.	0.2	2
82	UNRAVELING THE MOLECULAR INTERACTION BETWEEN PSEUDOMONAS SYRINGAE PV. ACTINIDIAE (PSA) AND THE KIWIFRUIT PLANT THROUGH RNASEQ APPROACH. Acta Horticulturae, 2015, , 89-94.	0.2	2
83	Modification of the phyllosphere bacterial biocoenosis by Pseudomonas syringae pv. actinidiae infection. Acta Horticulturae, 2018, , 275-278.	0.2	2
84	Validation of New Zealand Psa forecasting model in Emilia Romagna Region, Italy. Acta Horticulturae, 2019, , 71-78.	0.2	2
85	PROHEXADIONE-CALCIUM INDUCES IN APPLE THE BIOSYNTHESIS OF LUTEOFOROL, A NOVEL FLAVAN 4-OL, WHICH IS ACTIVE AGAINST ERWINIA AMYLOVORA. Acta Horticulturae, 2006, , 239-244.	0.2	2
86	USE OF PLANT BIOREGULATORS IN KIWIFRUIT PRODUCTION. Acta Horticulturae, 2011, , 337-344.	0.2	1
87	Quorum sensing in <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa). Acta Horticulturae, 2019, , 85-90.	0.2	1
88	RNA-SEQ ANALYSIS OF THE MOLECULAR INTERACTION BETWEEN PSEUDOMONAS SYRINGAE PV. ACTINIDIAE (PSA) AND THE KIWIFRUIT. Acta Horticulturae, 2015, , 357-362.	0.2	0
89	Insect-mediated vectoring of Pseudomonas syringae pv. actinidiae. Acta Horticulturae, 2018, , 269-274.	0.2	0
90	Molecular signalling inPseudomonas syringaepv.actinidiae. Acta Horticulturae, 2018, , 299-306.	0.2	0

#	Article	lF	CITATIONS
91	<i>Actinidia</i> - <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> interaction: differentially expressed plant transcripts during infection. Acta Horticulturae, 2018, , 315-320.	0.2	O
92	Transcriptome analysis of the <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa) pathogenesis process. Acta Horticulturae, 2018, , 321-326.	0.2	0
93	Is the physiological maturity at harvest influencing nectarine flavour after cold storage?. Acta Horticulturae, 2018, , 1429-1434.	0.2	O
94	Effect of plant extracts on <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> gene expression, motility and virulence. Acta Horticulturae, 2019, , 79-84.	0.2	0
95	Effect of prohexadionecalcium on nectar composition of pomaceous flowers and on bacterial growth. New Zealand Plant Protection, 0, 58, 106-111.	0.3	O
96	Biological effect of VOCs produced during <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> infection of kiwifruit plant. Acta Horticulturae, 2019, , 7-14.	0.2	0